Warm-up (5 feet – 2 feet)day ≥ 50 feet (3 feet)day ≥ 50 feet _____ _____ 3 feet 3 feet days ≥ 16 2/3
Agenda Homework Review 5-2 Right Triangles Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
5-1 Study Guide Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
5-1 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
5-1 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
10-3 Study Guide Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
10-3 Study Guide Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
10-3 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
10-3 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
10-3 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
5-2 Right Triangles Theorem 5-5 LL (Leg - Leg) If the legs of one right triangle are congruent to the corresponding legs of another right triangle, then the triangles are congruent. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
HA (Hypotenuse - Angle) If the hypotenuse and an acute angle of one right triangle are congruent to the hypotenuse and corresponding acute angle of another right triangle, then the two triangles are congruent. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
LA (Leg - Angle) Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001 If the leg and an acute angle of one right triangle are congruent to the corresponding leg and acute angle of another right triangle, then the triangles are congruent.
HL (Hypotenuse -Leg) Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001 If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and corresponding leg of another right triangle, then the triangles are congruent.
Answers Ahead
5-2 Study Guide Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
5-1Review Lesson 5-1, Page 772
Lesson 5-1 Answers 1. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
Lesson 5-1 Answers 2. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
Lesson 5-1 Answers 3. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
Lesson 5-1 Answers 4. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
Lesson 5-1 Answers 5. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
Lesson 5-1 Answers 6. is an angle bisector Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
Lesson 5-1 Answers 7. Will always intersect inside. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001 Will always intersect inside.
Lesson 5-1 Answers 8. No such triangle, will always intersect inside Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001 No such triangle, will always intersect inside
Lesson 5-1 Answers 9. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
Homework 5-2 Study Guide and Practice