Bisectors in Triangles

Slides:



Advertisements
Similar presentations
Concurrent Lines, Medians, and Altitudes
Advertisements

Section 1.5 Special Points in Triangles
Find each measure of MN. Justify Perpendicular Bisector Theorem.
Bisectors in Triangles
Vocabulary concurrent point of concurrency circumcenter of a triangle
Geometry Bisector of Triangles CONFIDENTIAL.
Warm Up 1. Draw a triangle and construct the bisector of one angle.
Warm Up 1. Draw a triangle and construct the bisector of one angle.
Bisectors of Triangles
Concurrent Lines Geometry Mrs. King Unit 4, Day 7.
° ° y + 3 = - ½ (x + 2)43. parallel 20. y – 2 = x neither.
Chapter Bisectors of angles. Objectives Prove and apply properties of perpendicular bisectors of a triangle. Prove and apply properties of angle.
Objectives Prove and apply properties of perpendicular bisectors of a triangle. Prove and apply properties of angle bisectors of a triangle.
5.2: Circumcenters and Incenters
Chapter 5.3 Concurrent Lines, Medians, and Altitudes
3.6—Bisectors of a Triangle Warm Up 1. Draw a triangle and construct the bisector of one angle. 2. JK is perpendicular to ML at its midpoint K. List the.
5-3 Bisectors in Triangles
Bisectors in Triangles.  Since a triangle has ________ sides, it has three ___________ ____________ The perpendicular bisector of a side of a _____________.
Objective: Inscribe and circumscribe polygons. Warm up 1. Length of arc AB is inches. The radius of the circle is 16 inches. Use proportions to find.
Geometry B POINTS OF CONCURRENCY. The intersection of the perpendicular bisectors. CIRCUMCENTER.
Bisectors in Triangles Chapter 5 Section 3. Objective Students will identify properties of perpendicular bisectors and angle bisectors.
Bisectors in Triangles
Triangle Bisectors 5.1 (Part 2). SWBAT Construct perpendicular bisectors and angle bisectors of triangles Apply properties of perpendicular bisectors.
Math 1 Warm-ups Fire stations are located at A and B. XY , which contains Havens Road, represents the perpendicular bisector of AB . A fire.
Chapter 5 Lesson 3 Objective: Objective: To identify properties of perpendicular and angle bisectors.
1. Given ABC is congruent to XYZ, AB = 30, BC = 45, AC = 40, XY = 5x + 10 and XZ = 3y + 7, find x and y. 2. Draw and label triangles JKL and XYZ. Indicate.
Special lines in Triangles and their points of concurrency Perpendicular bisector of a triangle: is perpendicular to and intersects the side of a triangle.
5.2 Bisectors of Triangles Guiding Question: How can an event planner use perpendicular bisectors of triangles to find the best location for a firework.
Bell work: Find the missing length
Bisectors of Triangles
Bisectors in Trangles 5.2.
Objectives Apply properties of perpendicular bisectors and angle bisectors of a triangle.
5-3 Bisectors in Triangles
The intersection of the perpendicular bisectors.
Bisectors of Triangles
 .
Bisectors of Triangles
Bisectors in Triangles
Section 5.1.
Warm Up 1. Draw a triangle and construct the bisector of one angle.
Bisectors in Triangles
Learning Targets I will be able to: Prove and apply properties of perpendicular bisectors of a triangle. and prove and apply properties of angle bisectors.
Circumscribed circles of a triangle
Bisectors of Triangles
Class Greeting.
Medians and Altitudes 5-3 of Triangles Warm Up Lesson Presentation
Objectives Prove and apply properties of perpendicular bisectors of a triangle. Prove and apply properties of angle bisectors of a triangle.
Bisectors of Triangles
Vocabulary concurrent point of concurrency circumcenter of a triangle
5.3 Concurrent Lines, Medians, and Altitudes
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Incenter of a triangle.
Bisectors of Triangles
5.1 and 5.2 Midsegments and Bisectors of Triangles
Bisectors in Triangles
Learning Targets I will be able to: Construct, prove and apply properties of angle bisectors of a triangle.
Bisectors in Triangles
Bisectors of Triangles
Point of Concurrency Definition: the point at which two or more lines, line segments or ray intersect. Picture:
Bisectors of Triangles
Bisectors of a Triangle
Bisectors in Triangles
Bisectors in Triangles
Learning Targets I will prove and apply properties of perpendicular bisectors of a triangle. I will prove and apply properties of angle bisectors of a.
Properties of Triangles
Bisectors in Triangles
5.1 and 5.2 Midsegments and Bisectors of Triangles
Bisectors in Triangles
Bisectors of a Triangle
Bisectors of Triangles
Presentation transcript:

Bisectors in Triangles 5-2 Bisectors in Triangles Section 5.2 Holt McDougal Geometry Holt Geometry

Warm Up If mADB = 20, find mADC. If mADB=6x + 15 and mBDC=10x+3, find mADC.

A perpendicular bisector of a side does not always pass through the opposite vertex. The three perpendicular bisectors of a triangle meet at a point called the circumcenter.

When three or more lines intersect at one point, the lines are said to be concurrent. The point of concurrency is the point where they intersect. The three perpendicular bisectors of a triangle are concurrent. This point of concurrency is the circumcenter of the triangle.

The circumcenter can be inside the triangle, outside the triangle, or on the triangle.

The circumcenter of ΔABC is the center of its circumscribed circle The circumcenter of ΔABC is the center of its circumscribed circle. A circle that contains all the vertices of a polygon is circumscribed about the polygon.

DG, EG, and FG are the perpendicular bisectors of ∆ABC. Find GC.

MZ is a perpendicular bisector of ∆GHJ. 1. Find GM. 2. Find GK. 3. Find JZ.

Find the circumcenter of ∆HJK with vertices H(0, 0), J(10, 0), and K(0, 6). Find the circumcenter of ∆GOH with vertices G(0, –9), O(0, 0), and H(8, 0) .

A triangle has three angles, so it has three angle bisectors A triangle has three angles, so it has three angle bisectors. The angle bisectors of a triangle are also concurrent. This point of concurrency is the incenter of the triangle .

Unlike the circumcenter, the incenter is always inside the triangle.

The incenter is the center of the triangle’s inscribed circle The incenter is the center of the triangle’s inscribed circle. A circle inscribed in a polygon intersects each line that contains a side of the polygon at exactly one point.

MP and LP are angle bisectors of ∆LMN. 1. Find the shortest distance from P to MN. 2. Find mPMN.

Check It Out! Example 3a QX and RX are angle bisectors of ΔPQR. Find the distance from X to PQ. 2. Find mPQX.

A city plans to build a firefighters’ monument in the park between three streets. Draw a sketch to show where the city should place the monument so that it is the same distance from all three streets. Justify your sketch.

Lesson Quiz: Part I 1. ED, FD, and GD are the perpendicular bisectors of ∆ABC. Find BD. 2. JP, KP, and HP are angle bisectors of ∆HJK. Find the distance from P to HK.

Lesson Quiz: Part II 3. Lee’s job requires him to travel to X, Y, and Z. Draw a sketch to show where he should buy a home so it is the same distance from all three places.