Flux Limits for Ultra-High Energy Neutrinos

Slides:



Advertisements
Similar presentations
July 29, 2003; M.Chiba1 Study of salt neutrino detector for GZK neutrinos.
Advertisements

September 16-19, 2008 Hamburg 2008 Olaf Scholten For the NuMoon collaboration KVI, Groningen.
The NuMoon experiment: first results Stijn Buitink for the NuMoon collaboration Radboud University Nijmegen 20 th Rencontres de Blois, 2008 May 19.
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
Radio detection of UHE neutrinos E. Zas, USC Leeds July 23 rd 2004.
BDT Radio – 1b – CMV 2009/09/04 Basic Detection Techniques 1b (2009/09/04): Single pixel feeds Theory: Brightness function Beam properties Sensitivity,
George W.S. Hou & M.A. Huang Center for Cosmology and Particle Astrophysics Department of Physics, National Taiwan University, 1, Sec. 4, Roosevelt Rd.,Taipei,
/AMvdBInt. WS Saltdome Shower Array SLAC 3-4 Feb Neutrino Detection in Salt Domes under LOFAR Ad M. van den Berg Kernfysisch Versneller.
Ultra high energy cosmic rays: highlights of recent results J. Matthews Pierre Auger Observatory Louisiana State University 19 August August.
Heino Falcke Radboud University, Nijmegen ASTRON, Dwingeloo
PERSPECTIVES OF THE RADIO ASTRONOMICAL DETECTION OF EXTREMELY HIGH ENERGY NEUTRINOS BOMBARDING THE MOON R.D. Dagkesamanskii 1), I.M. Zheleznykh 2) and.
Radio Detection of High Energy Cosmic Ray Air Showers A short review XX th RENCONTRES DE BLOIS 18th - 23rd May 2008 “Challenges in Particle Astrophysics”
The LOFAR Cosmic Ray KSP
8-Jan-2008ASPERA R&D Lisbon AMvdB1 R&D for Radio Detection Ad M. van den Berg R&D and Astroparticle Physics meeting 8 January 2008.
XXI èmes Rencontres de Blois Windows on the Universe Characteristics of high energy cosmic rays observed with CODALEMA : observed with CODALEMA : Evidence.
Simulations of radio emission from cosmic ray air showers Tim Huege & Heino Falcke ARENA-Workshop Zeuthen,
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
for the ARA collaboration,
ARENA2012, Erlangen June Lunar Space Missions for Ultrahigh- energy Cosmic Rays and Neutrinos Observation G. A. Gusev, V. A. Chechin, and V. A. Ryabov.
RASTA: The Radio Air Shower Test Array Enhancing the IceCube Observatory M. A. DuVernois University of Wisconsin IceCube Research Center for the RASTA.
The lunar Askaryan technique with the Square Kilometre Array Clancy James, Erlangen Centre for Astroparticle Physics (ECAP) 34th ICRC, The Hague, Netherlands.
Use LL1 & LL6 to detect microwave radiation equipping the empty pixels with microwave radio receivers Pixels without photomultipliers (removed to be installed.
Sept. 2010CRIS, Catania Olaf Scholten KVI, Groningen Physics Radio pulse results plans.
RICE: ICRC 2001, Aug 13, Recent Results from RICE Analysis of August 2000 Data See also: HE228: Ice Properties (contribution) HE241: Shower Simulation.
What we do know about cosmic rays at energies above eV? A.A.Petrukhin Contents 4 th Round Table, December , Introduction. 2. How these.
A search for neutrinos from long-duration GRBs with the ANTARES underwater neutrino telescope arxiv C.W. James for the ANTARES collaboration.
L. CazónHadron-Hadron & Cosmic-Rays interactions at multi-TeV energies. Trento,2-Dez Results from the Pierre Auger Observatory L. Cazon, for the.
Jeong, Yu Seon Yonsei University Neutrino and Cosmic Ray Signals from the Moon Jeong, Reno and Sarcevic, Astroparticle Physics 35 (2012) 383.
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
Near-Field Effects of Cherenkov Radiation Induced by Ultra High Energy Cosmic Neutrinos Chih‐Ching Chen Collaboration with Chia-Yu Hu and Pisin Chen LeCosPA.
Detecting Ultra High Energy Neutrinos with LOFAR M.Mevius for the LOFAR NuMoon and CR collaboration.
Bergische Universität Wuppertal Jan Auffenberg et al. Rome, Arena ARENA 2008 A radio air shower detector to extend IceCube ● Three component air.
32nd International Cosmic Ray Conference August 2011, Beijing China First detection of extensive air showers by the TREND self-triggering radio experiment.
LUNASKA UHE Neutrino Flux Limits - From Parkes Onwards The Lunar Cherenkov Technique – From Parkes Onwards R. Protheroe R. Crocker C. James D. Jones R.
Interplay between Particle and Astroparticle Physics QMUL: August 2014 Results from the Pierre Auger Observatory Alan Watson* University of Leeds, UK *Talk.
Future high energy extensions of IceCube with new technologies: Radio and/or acoustical detectors Karle.
Andreas Horneffer for the LOFAR-CR Team
Lunar Radio Cerenkov Observations of UHE Neutrinos
Detecting UHE cosmic-rays and neutrinos hitting the Moon
LUNASKA The Directional Dependence of the Lunar Cherenkov Technique in Regards to UHE Neutrino Detection -C.W. James (University of Adelaide) IF we want.
Impulsive Increase of Galactic Cosmic Ray Flux Observed by IceTop
IPHC-IN2P3/CNRS Strasbourg
Search for neutrinos from gamma-ray bursts with the ANTARES telescope
Development of the 21CMA radio-detection array (Xinjiang/China) for the observation of UHE neutrinos showers Didier Charrier1, Pascal Lautridou1, Olivier.
Dark Matter Search With an Ultra-low Threshold Germanium Detector proposed by Tsinghua University Seoul National University Academia Sinica Qian Yue.
Robert Lahmann VLVnT – Toulon – 24-April-2008
Harm Schoorlemmer, for the Pierre Auger Collaboration H. Schoorlemmer
Topics The case for remote radio detection of neutrinos
Andreas Horneffer for the LOFAR Cosmic Ray KSP
Ron Ekers CSIRO Ginzburg Conference on Physics
Cosmic ray and Neutrino Physics
Coherent radio-wave emission from extensive air showers.
The endpoint formalism for the calculation of electromagnetic radiation and its applications in astroparticle physics radiation from „endpoints“ antenna.
LOFAR Lightning Imaging (LOFLI)
David Saltzberg (UCLA)
30th International Cosmic Ray Conference
HAWC Science Survey of 2p sr up to 100 TeV energies Extended Sources
John Kelley for the IceCube Collaboration
Trigger Strategy for LOPESSTAR
Alexander Kappes Francis Halzen Aongus O’Murchadha
Surrounding effects and sensitivity of the CODALEMA experiment
Analytic description of the radio emission of air showers based on its emission mechanisms Christian Glaser, Sijbrand de Jong, Martin Erdmann, Jörg Hörandel,
ECRS Radiodetection of cosmic ray extensive air showers : present status of the CODALEMA experiment SUBATECH Nantes Université de Nantes, In2p3,
Modern Status LUNAR ОRBITAL RADIO DETEKTOR
for the Detection of UHE Cosmic Rays and Neutrinos
The Aperture and Precision of the Auger Observatory
Detection of GRB with Water Cherenkov Detectors
A. Uryson Lebedev Physical Institute RAS, Moscow
Acoustic Measurements in ANTARES: Status and Aims
Studies and results at Pierre Auger Observatory
Presentation transcript:

Flux Limits for Ultra-High Energy Neutrinos Physics Radio pulse, Ev>1022 eV NuMoon@WSRT, results NuMoon@LOFAR, status Olaf Scholten KVI, Groningen August 2011 ICRC, Beijing

Principle of the measurement Small flux ≈ 1 / km2 / sr / century above 1020 eV! Lunar area ≈ 107 km2 Cosmic ray or neutrino Detection: Westerbork/LOFAR antennas 107 km2 100MHz Radio waves Proefje door Tjalling Nijboer en Martin Stokroos: Statische electriciteit van wrijfstok is hoorbaar via radio ontvanger op de middengolf. Principle of the measurement August 2011 ICRC, Beijing

Askaryan effect: Coherent Cherenkov emission ~10 cm ~2 m Cosmic ray shower Wave front Recent evidence: Askaryan effect in CR airshowers K.D. de Vries, AstroParticle Physics & arXiv:1008.3308 H. Schoorlemmer for PAO, ARENA 2010 Important magnitudes: Leading cloud of electrons, v  c Typical size of order 10cm Coherent Čerenkov for ν  2-5 GHz cos θc =1/n , θc=56o for ∞ shower length Length of shower, L  2-3 m strong angular spreading for ν  100 MHz

Cosmic rays, Position on Moon Calculations for Ecr=4 1021 eV 3 GHz 100 MHz 100 MHz 3 GHz With decreasing ν increasing probability: ∫ over surface Moon Detection probability  ν-3 rim inside O.S. et al, Astropart.Phys. 26 (2006) 219

Results WSRT observations No pulse of 240kJy seen in 46.7 h data  90% confidence limit on neutrino flux O.S. et al, PRL 103(2009)191301 Buitink, et al., A&A 521, A47 (2010).

NuMoon Experiment @ LOFAR New generation of radio-telescopes, many (3000) simple wire antennas Total collecting area  0.25 km2 Cover whole moon, Sensitivity 25 times better than WSRT. Band: 115-240 MHz Multiple tied-array beams August 2011 ICRC, Beijing

Nano-second pulse finding Determine power over threshold in sliding window of length N Aim: Determine optimum window length N Threshold: set to 1 accidental count per minute Correcting for atmospheric dispersion, with accuracy ΔSTEC TECU Strength of pulse added to background in units of noise power August 2011 ICRC, Beijing Optimum: N=10-15

Beam shape depends on station layout Station layout: 4 km x 4 km Beam profile φ=210o φ=120o Δφ Side-lobes suppressed Max: Δφ= 0.062o @ φ=120o Min: Δφ= 0.056o @ φ=210o Conclusion: need fewer than 50 beams to cover visible Lunar surface August 2011 ICRC, Beijing

Background noise Radio stations: narrow-band RFI  can easily be filtered out Human activity: Broad-band RFI  potential problem ! Data: 8 half stations for 10 seconds direction Virgo A Amplitude spectrum Gaussian  No problems expected Pulsed (broad-band )RFI suppressed further by anti-coincidence filter between the different radio beams August 2011 ICRC, Beijing

Neutrinos Conclusion: With LOFAR able to LOFAR, 1 week Conclusion: With LOFAR able to reach sensitivity level W-B estimate

Conclusions NuMoon Future: NuMoon @ WSRT: New limit for E > 1023 eV NuMoon @ LOFAR: Sensitive to W-B flux Future: NuMoon @ SKA Extend limit to lower E Improve Flux limit NuMoon NuMoon collaboration: O.S., Stijn Buitink, Heino Falcke , Clancy James, Maaijke Mevius, Ben Stappers, Kalpana Singh, Richard Strom , Sander ter Veen August 2011 ICRC, Beijing

Cosmic rays Pierre Auger model-independent limit Pierre Auger extrapolation S. ter Veen, et al. , Phys. Rev. D 82, 103014 (2010). August 2011 ICRC, Beijing