May , JLab, Newport News, VA, USA

Slides:



Advertisements
Similar presentations
December 17, 2004 JLab Hall A Upgrade 1 Semi-Inclusive DIS --opportunities at JLab upgrade Feng Yuan RBRC, Brookhaven National Laboratory.
Advertisements

Cédric Lorcé IPN Orsay - LPT Orsay Observability of the different proton spin decompositions June , University of Glasgow, UK CLAS12 3rd European.
Quantum Phase-Space Quark Distributions in the Proton Xiangdong Ji University of Maryland — EIC workshop, Jefferson Lab, March 16, 2004 —
Cédric Lorcé IFPA Liège ECT* Colloquium: Introduction to quark and gluon angular momentum August 25, 2014, ECT*, Trento, Italy Spin and Orbital Angular.
Cédric Lorcé SLAC & IFPA Liège How to define and access quark and gluon contributions to the proton spin December 2, 2014, IIT Bombay, Bombay, India INTERNATIONAL.
Polarized structure functions Piet Mulders ‘Lepton scattering and the structure of nucleons and nuclei’ September 16-24, 2004
Cédric Lorcé SLAC & IFPA Liège Transversity and orbital angular momentum January 23, 2015, JLab, Newport News, USA.
Light-front densities for transversely polarized hadrons Lorcé Cédric Mainz University Germany *4th Workshop on ERHMT, JLAb, Newport News, Virginia USA.
Xiangdong Ji University of Maryland/SJTU Physics of gluon polarization Jlab, May 9, 2013.
Xiangdong Ji University of Maryland/SJTU
9/19/20151 Semi-inclusive DIS: factorization Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory.
Cédric Lorcé IPN Orsay - LPT Orsay Orbital Angular Momentum in QCD June , Dipartimento di Fisica, Universita’ di Pavia, Italy.
Future Opportunities at an Electron-Ion Collider Oleg Eyser Brookhaven National Laboratory.
Proton Spin Decomposition : The Second Hot Debate in Proton Spin Physics Hai-Yang Cheng Academia Sinica Anomalous gluon & sea-quark interpretation of smallness.
Generalized Transverse- Momentum Distributions Cédric Lorcé Mainz University Germany Barbara Pasquini Pavia University Italy In collaboration with:
Quark Correlations and Single Spin Asymmetry Quark Correlations and Single Spin Asymmetry G. Musulmanbekov JINR, Dubna, Russia Contents.
Poincare covariance, Canonical quantization and Gauge invariance in the Nucleon internal structure X.S.Chen, Dept. of Phys., Huazhong Univ. Sci. Tec. X.F.Lu,
Poincare covariance, Canonical quantization and Gauge invariance in the Nucleon internal structure X.S.Chen, Dept. of Phys., Huazhong Univ. Sci. Tec. X.F.Lu,
Cédric Lorcé IFPA Liège Multidimensional pictures of the nucleon (3/3) June 30-July 4, 2014, LPT, Paris-Sud University, Orsay, France Second International.
Wigner Distributions and light-front quark models Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Feng Yuan Xiaonu Xiong IPN.
Generalized TMDs of the Proton Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Mainz U. & INFN, Pavia.
大西 陽一 (阪 大) QCDの有効模型に基づく光円錐波動関数を用い た 一般化パートン分布関数の研究 若松 正志 (阪大)
0 Simonetta Liuti University of Virginia Structure of Nucleons and Nuclei Workshop Como, June 10 th- 14 th, 2013 N&N-StructureSimonetta Liuti Generalized.
Single Spin Asymmetry in Correlated Quark Model Single Spin Asymmetry in Correlated Quark Model G. Musulmanbekov JINR, Dubna Contents.
SPIN STRUCTURE OF PROTON IN DYNAMICAL QUARK MODEL SPIN STRUCTURE OF PROTON IN DYNAMICAL QUARK MODEL G. Musulmanbekov JINR, Dubna, Russia
EIC, Nucleon Spin Structure, Lattice QCD Xiangdong Ji University of Maryland.
Baryon Resonance Analysis from MAID D. Drechsel, S. Kamalov, L. Tiator.
1 Sudakov and heavy-to-light form factors in SCET Zheng-Tao Wei Nankai University , KITPC, Beijing.
Cédric Lorcé IPN Orsay - LPT Orsay Introduction to the GTMDs and the Wigner distributions June , Palace Hotel, Como, Italy.
Wigner distributions and quark orbital angular momentum Cédric Lorcé and May , JLab, Newport News, VA, USA.
OAM in transverse densities and resonances Cédric Lorcé and 09 Feb 2012, INT, Seattle, USA INT Workshop INT-12-49W Orbital Angular Momentum in QCD February.
Single spin asymmetries in pp scattering Piet Mulders Trento July 2-6, 2006 _.
Transverse-Momentum Distributions and spherical symmetry Cédric Lorcé Mainz University Germany in collaboration with Barbara Pasquini Pavia University.
Relation between TMDs and PDFs in the covariant parton model approach Relation between TMDs and PDFs in the covariant parton model approach Petr Zavada.
Nucleon spin decomposition at twist-three Yoshitaka Hatta (Yukawa inst., Kyoto U.) TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Proton spin structure in phase-space May 17, FSU Alumni Center, Tallahassee, Florida, USA Cédric Lorcé CPhT Baryons May 2016 Florida State University.
Structure functions are parton densities P.J. Mulders Vrije Universiteit Amsterdam UIUC March 2003 Universality of T-odd effects in single.
Xiangdong Ji U. Maryland/ 上海交通大学 Recent progress in understanding the spin structure of the nucleon RIKEN, July 29, 2013 PHENIX Workshop on Physics Prospects.
SPIN OF THE PROTON IN CORRELATED QUARK MODEL G
Gluon orbital angular momentum in the nucleon
Nucleon spin decomposition
Sep 21st 2015, INFN Frascati National Laboratories, Frascati, Italy
June 28, Temple University, Philadelphia, USA
June , Dipartimento di Fisica, Universita’ di Pavia, Italy
Generalized Parton Distributions Michel Guidal (IPN Orsay)
Probing the gluon Wigner distribution in diffractive dijet production
Wigner, Husimi and GTMD at small-x
Qin-Tao Song High Energy Accelerator Research Organization (KEK)
Accessing the gluon Wigner distribution in ep and pA collisions
Neutron Transverse Spin Structure
Structure and Dynamics of the Nucleon Spin on the Light-Cone
3/19/20181 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
QCD: the Final Frontier of Standard Model Physics
Strangeness and Spin in Fundamental Physics
Announcements Exam Details: Today: Problems 6.6, 6.7
Quark’s angular momentum densities in position space
August 29, Riken Tokyo Office, Tokyo, Japan
September 29th, IPNO, Orsay
Can We Learn Quark Orbital Motion from SSAs?
Check directly vs data That is, apply new effective force directly to calculate nuclear properties using Hartree-Fock (as for usual well known force)
Unique Description for SSAs in DIS and Hadronic Collisions
light-cone (LC) variables
高能物理学会第八届全国会员代表大会暨学术年会
Unique Description for Single Transverse Spin Asymmetries
Sichuan Chengdu → Huazhong U of Sci. & Wuhan
Heavy-to-light transitions on the light cone
Singluarity and Gauge Link in Light Cone Gauge
Unifying the Mechanisms for SSAs in Hard Process
Single spin asymmetries in semi-inclusive DIS
Institute of Modern Physics Chinese Academy of Sciences
Presentation transcript:

May 7 2013, JLab, Newport News, VA, USA The proton spin decomposition: Path dependence and gauge symmetry Cédric Lorcé IPN Orsay - LPT Orsay May 7 2013, JLab, Newport News, VA, USA

The decompositions in a nutshell Jaffe-Manohar (1990) Lq Sq Lg Sg

The decompositions in a nutshell Jaffe-Manohar (1990) Ji (1997) Lq Lq Sq Sq Lg Sg Jg

Gauge-invariant extension (GIE) The decompositions in a nutshell Jaffe-Manohar (1990) Ji (1997) Lq Lq Sq Sq Lg Sg Jg Chen et al. (2008) Lq Sq Lg Sg Gauge-invariant extension (GIE)

Gauge-invariant extension (GIE) The decompositions in a nutshell Jaffe-Manohar (1990) Ji (1997) Lq Lq Sq Sq Lg Sg Jg Chen et al. (2008) Wakamatsu (2010) Lq Lq Sq Sq Lg Sg Lg Sg Gauge-invariant extension (GIE)

Gauge-invariant extension (GIE) The decompositions in a nutshell Canonical Kinetic Jaffe-Manohar (1990) Ji (1997) Lq Lq Sq Sq Lg Sg Jg Chen et al. (2008) Wakamatsu (2010) Lq Lq Sq Sq Lg Lg Sg Sg Gauge-invariant extension (GIE)

The Chen et al. approach [Chen et al. (2008,2009)] [Wakamatsu (2010,2011)]

The Chen et al. approach [Chen et al. (2008,2009)] [Wakamatsu (2010,2011)] Gauge transformation

The Chen et al. approach [Chen et al. (2008,2009)] [Wakamatsu (2010,2011)] Gauge transformation Pure-gauge covariant derivatives

The Chen et al. approach [Chen et al. (2008,2009)] [Wakamatsu (2010,2011)] Gauge transformation Pure-gauge covariant derivatives Field strength

The canonical formalism [C.L. (2013)] Textbook Lagrangian Dynamical variables

The canonical formalism [C.L. (2013)] Textbook Lagrangian Dynamical variables Gauge covariant

The canonical formalism [C.L. (2013)] Textbook Lagrangian Dynamical variables Gauge covariant Gauge invariant Dirac variables [Dirac (1955)] [Mandelstam (1962)] Dressing field Gauge transformation

The analogy with General Relativity [C.L. (2012,2013)] Dual role

Physical polarizations The analogy with General Relativity [C.L. (2012,2013)] Dual role Pure gauge Physical polarizations Degrees of freedom

Physical polarizations Geometrical interpretation The analogy with General Relativity [C.L. (2012,2013)] Dual role Pure gauge Physical polarizations Degrees of freedom Geometrical interpretation Parallelism Curvature

The analogy with General Relativity [C.L. (2012,2013)] Dual role Pure gauge Physical polarizations Degrees of freedom Geometrical interpretation Parallelism Curvature Inertial forces Gravitational forces Analogy with General Relativity

The geometrical interpretation [Hatta (2012)] [C.L. (2012)] Parallel transport

The geometrical interpretation [Hatta (2012)] [C.L. (2012)] Parallel transport

The geometrical interpretation [Hatta (2012)] [C.L. (2012)] Parallel transport

The geometrical interpretation [Hatta (2012)] [C.L. (2012)] Parallel transport Path dependent! Stueckelberg symmetry

The gauge symmetry [C.L. (in preparation)] Quantum electrodynamics « Physical » « Background »

The gauge symmetry [C.L. (in preparation)] Quantum electrodynamics « Physical » « Background » Passive

The gauge symmetry [C.L. (in preparation)] Quantum electrodynamics « Physical » « Background » Passive Active

The gauge symmetry [C.L. (in preparation)] Quantum electrodynamics « Physical » « Background » Passive Active Active x (Passive)-1

The gauge symmetry Stueckelberg [C.L. (in preparation)] Quantum electrodynamics « Physical » « Background » Stueckelberg Passive Active Active x (Passive)-1

The semantic ambiguity Quid ? « physical » « measurable » « gauge invariant »

The semantic ambiguity Quid ? « physical » « measurable » « gauge invariant » Observables Measurable, physical, gauge invariant (active and passive) E.g. cross-sections

The semantic ambiguity Quid ? « physical » « measurable » « gauge invariant » Observables Measurable, physical, gauge invariant (active and passive) E.g. cross-sections Path Stueckelberg Background Expansion scheme dependent E.g. collinear factorization

The semantic ambiguity Quid ? « physical » « measurable » « gauge invariant » Observables Measurable, physical, gauge invariant (active and passive) E.g. cross-sections Path Stueckelberg Background Expansion scheme dependent E.g. collinear factorization Quasi-observables « Measurable », « physical », « gauge invariant » (only passive) E.g. parton distributions

The local limit Local limit of quasi-observables Path dependence

Parametrized by form factors The local limit Local limit of quasi-observables Path dependence Genuine local quantities are path independent ! Parametrized by form factors

Parametrized by form factors The local limit Local limit of quasi-observables Path dependence Genuine local quantities are path independent ! Parametrized by form factors Passive and active Passive and path independent Passive and local « True » gauge invariance : [Ji (2009)]

The twist-2 OAM [C.L., Pasquini (2011)] [C.L., Pasquini, Xiong, Yuan (2012)] [Hatta (2012)] Quark Wigner operator

The twist-2 OAM [C.L., Pasquini (2011)] [C.L., Pasquini, Xiong, Yuan (2012)] [Hatta (2012)] Quark Wigner operator Quark OAM operator

The twist-2 OAM [C.L., Pasquini (2011)] [C.L., Pasquini, Xiong, Yuan (2012)] [Hatta (2012)] Quark Wigner operator Quark OAM operator Exact relation « Vorticity »

The path dependence [Ji, Xiong, Yuan (2012)] [Hatta (2012)] [C.L. (2013)] Canonical quark OAM operator

x-based Fock-Schwinger Coincides locally with kinetic quark OAM The path dependence [Ji, Xiong, Yuan (2012)] [Hatta (2012)] [C.L. (2013)] Canonical quark OAM operator x-based Fock-Schwinger Coincides locally with kinetic quark OAM

x-based Fock-Schwinger Coincides locally with kinetic quark OAM The path dependence [Ji, Xiong, Yuan (2012)] [Hatta (2012)] [C.L. (2013)] Canonical quark OAM operator x-based Fock-Schwinger Light-front ISI FSI Drell-Yan SIDIS Coincides locally with kinetic quark OAM Naive T-even

The summary Canonical Kinetic Jaffe-Manohar (1990) Not observable Ji (1997) Observable Lq Lq Sq Sq Lg Sg Jg Chen et al. (2008) Quasi-observable Wakamatsu (2010) Quasi-observable Lq Lq Sq Sq Lg Sg Lg Sg

Backup slides

Phase-space densities The parton distributions GTMDs [PRD84 (2011) 014015] [PRD85 (2012) 114006] [PRD84 (2011) 034039] [PLB710 (2012) 486] TMDs TMFFs GPDs [JHEP1105 (2011) 041] TMCs PDFs [PRD79 (2009) 014507] [Nucl. Phys. A825 (2009) 115] [PRL104 (2010) 112001] [PRD79 (2009) 113011] FFs [PRD74 (2006) 054019] [PRD78 (2008) 034001] [PRD79 (2009) 074027] Charges Phase-space densities

The spin-spin-orbit correlations [C.L., Pasquini (2011)]

The light-front wave functions Overlap representation Momentum Polarization Light-front quark models Wigner rotation [PRD74 (2006) 054019] [PRD78 (2008) 034001] [PRD79 (2009) 074027]

Phenomenological comparison The orbital angular momentum OAM Kinetic GPDs Canonical (naive) TMDs Canonical GTMDs Phenomenological comparison but

Gauge-variant operator Lorentz-invariant extensions The gauge-invariant extension (GIE) Gauge-variant operator GIE2 GIE1 Gauge « Natural » gauges Rest Center-of-mass Infinite momentum Lorentz-invariant extensions ~ « Natural » frames