PRODUCTION OF 100MT DISTILLED MONOGLYCERIDE (DMG) SAJJAD KHUDHUR ABBAS Ceo , Founder & Head of SHacademy Chemical Engineering , Al-Muthanna University, Iraq Oil & Gas Safety and Health Professional – OSHACADEMY Trainer of Trainers (TOT) - Canadian Center of Human Development
PROCESS BACKGROUND
Formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase. Monoglyceride (MG) - chemical compound a.k.a monoacylglycerol Industrial chemical and biological processes. General Information Act as emulsifiers - mix ingredients that would not otherwise blend well
PROCESS DESCRIPTION
Monoglyceride synthesis Glycerolysis procedure is more economical - fats are cheaper and less glycerol is required. Fats and fatty acids are insoluble in glycerol - high temperatures are required to force the reaction to proceed. On production scale, direct esterification and interesterification can be done continuously or batchwise.
Flow chart
Physical and Chemical Properties
DIGLYCERIDES (DISTEARIN) White to pale yellow Wax-like solid COMPONENTS Appearance Formula MW (g/mol) Tb (K) Tf ΔfHo298 (kJ/mol) GLYCEROL Clear viscous liquid Little or no odor C3H5(OH)3 92.0900 444 472 -669.60 MONOGLYCERIDES (MONOSTEARIN) Colorless Odorless Sweet-taste Flaky powder C21H4204 358.5558 940.09 424.9 -1031.31 DIGLYCERIDES (DISTEARIN) White to pale yellow Wax-like solid Mild fatty odour C39H76O5 625.0177 1336.04 454.8 -1495.40
LEVEL 1 SELECTION OF PROCESSING MODE
Proposed Process Batch Continuous Operating 24 hr/day Production is continuous Total batch time 3-5 hours 7 batches/day production 99% purity 40 - 60% purity 98% purity Annual cost is higher Annual cost is lower Lower maintenance cost Higher specific manufacturing and operating cost Higher maintenance cost
LEVEL 2 SELECTION OF INPUT-OUTPUT STRUCTURE
Reaction Information Reaction 1 Reaction 2 Rate constant 350oF 460oF k1 0.291 1.566 k2 0.163 0.220
Input-Output Structure
Glycerol Selectivity r1=k1CGCFA(1) r2=k2CMCFA(2) Base on consecutive reaction Glycerol − 𝑑𝐶 𝐺 𝑑𝑡 =− 𝑟 𝐺 = 𝑘 1 𝐶 𝐺 𝐶 𝐹𝐴 (3) Fatty acid − 𝑑𝐶 𝐹𝐴 𝑑𝑡 =− 𝑟 𝐹𝐴 = 𝑟 1 + 𝑟 2 = 𝑘 1 𝐶 𝐺 𝐶 𝐹𝐴 + 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (4) Monoglyceride 𝑑𝐶 𝑀 𝑑𝑡 = 𝑟 𝑀 = 𝑟 1 − 𝑟 2 = 𝑘 1 𝐶 𝐺 𝐶 𝐹𝐴 − 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (5) Water 𝑑𝐶 𝑊 𝑑𝑡 = 𝑟 𝑊 = 𝑟 1 + 𝑟 2 = 𝑘 1 𝐶 𝐺 𝐶 𝐹𝐴 + 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (6) Diglyceride 𝑑𝐶 𝐷 𝑑𝑡 = 𝑟 𝐷 = 𝑟 2 = 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (7)
𝐶 𝐺 = 𝐶 𝐺𝑜 (1− 𝑋 𝐺 )(8) − 𝑑𝐶 𝐺 𝑑𝑡 = 𝑑 (𝐶 𝐺𝑜 (1− 𝑋 𝐺 )) 𝑑𝑡 = 𝐶 𝐺𝑜 𝑑 𝑋 𝐺 𝑑𝑡 = 𝑘 1 𝐶 𝐺𝑜 1− 𝑋 𝐺 𝐶 𝐹𝐴 𝑑 𝑋 𝐺 𝑑𝑡 = 𝑘 1 1− 𝑋 𝐺 𝐶 𝐹𝐴 (9) − 𝑑𝐶 𝐹𝐴 𝑑𝑡 = 𝑘 1 𝐶 𝐺𝑜 (1− 𝑋 𝐺 ) 𝐶 𝐹𝐴 + 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (10) 𝑑𝐶 𝑀 𝑑𝑡 = 𝑘 1 𝐶 𝐺𝑜 (1− 𝑋 𝐺 ) 𝐶 𝐹𝐴 − 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (11) 𝑑𝐶 𝑊 𝑑𝑡 = 𝑘 1 𝐶 𝐺𝑜 (1− 𝑋 𝐺 ) 𝐶 𝐹𝐴 + 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (12) 𝑑𝐶 𝐷 𝑑𝑡 = 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (13)
By applying chain rule; − 𝑑𝐶 𝐺 𝑑 𝑋 𝐺 = 𝑘 1 𝐶 𝐺𝑜 1− 𝑋 𝐺 𝐶 𝐹𝐴 𝑘 1 1− 𝑋 𝐺 𝐶 𝐹𝐴 = 𝐶 𝐺𝑜 (14) − 𝑑𝐶 𝐹𝐴 𝑑 𝑋 𝐺 = 𝑘 1 𝐶 𝐺𝑜 1− 𝑋 𝐺 𝐶 𝐹𝐴 + 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 𝑘 1 1− 𝑋 𝐺 𝐶 𝐹𝐴 = 𝐶 𝐺𝑜 + 𝑘 2 𝐶 𝑀 𝑘 1 1− 𝑋 𝐺 (15) 𝑑𝐶 𝑀 𝑑 𝑋 𝐺 = 𝑘 1 𝐶 𝐺𝑜 1− 𝑋 𝐺 𝐶 𝐹𝐴 − 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 𝑘 1 1− 𝑋 𝐺 𝐶 𝐹𝐴 = 𝐶 𝐺𝑜 − 𝑘 2 𝐶 𝑀 𝑘 1 1− 𝑋 𝐺 (16) 𝑑𝐶 𝑊 𝑑 𝑋 𝐺 = 𝑘 1 𝐶 𝐺𝑜 1− 𝑋 𝐺 𝐶 𝐹𝐴 + 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 𝑘 1 1− 𝑋 𝐺 𝐶 𝐹𝐴 = 𝐶 𝐺𝑜 + 𝑘 2 𝐶 𝑀 𝑘 1 1− 𝑋 𝐺 (17) 𝑑𝐶 𝐷 𝑑 𝑋 𝐺 = 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 𝑘 1 1− 𝑋 𝐺 𝐶 𝐹𝐴 = 𝑘 2 𝐶 𝑀 𝑘 1 1− 𝑋 𝐺 (18)
Economic Potential of Level 2
LEVEL 3: REACTOR AND RECYCLE STREAMS
Generally, there will be input for the process and output from the process. Here we can define what are the related variables or input-output that present in this process. Feed stream: In this process, the feed raw material is assumed already pure, so no need to purify the feed streams. Excess reactant: fatty acid is fed as an excess reactant and is supplied in liquid form. Recycle and purge: There are recycle stream from glycerol and fatty acid but there are no purges from the process.
Recycle Stream
Adiabatic Temperature Energy balances Simplified; Where;
Where from the process,
𝑇 𝑎 = 𝑇 𝑚 − 𝑗−1 𝑁 𝑛 𝑗 ∆𝐻 𝑟𝑗 𝑚 𝑖−1 𝑀 𝑃 𝑖 𝑐 𝑝𝑖 𝑗=1 𝑁 𝑛 𝑗 ∆𝐻 𝑟𝑗 𝑚 = 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 ∆𝐻 𝑟1 ° + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 ∆𝐻 𝑟2 ° + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝑀 + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝐷 + 𝐹 𝐹𝐺 𝑋 𝐺 𝑐 𝑝 𝑊 − 𝐹 𝐹𝐺 1− 𝑋 𝐺 𝑐 𝑝 𝐺 − 𝐹 𝐹𝐺 1− 𝑋 𝐺 𝑐 𝑝 𝐹𝐴 ( 𝑇 𝑚 −25)
𝑖=1 𝑀 𝑃 𝑖 𝑐 𝑝𝑖 = 𝐹 𝐹𝐺 1− 𝑋 𝐺 𝑐 𝑝𝐺 + 𝐹 𝐹𝐺 1− 𝑋 𝐺 𝑐 𝑝𝐹𝐴 + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝𝑀 + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝𝐷 + 𝐹 𝐹𝐺 𝑋 𝐺 𝑐 𝑝𝑊 𝑖=1 𝑀 𝑃 𝑖 𝑐 𝑝𝑖 = 𝐹 𝐹𝐺 1− 𝑋 𝐺 𝑐 𝑝𝐺 + 𝐹 𝐹𝐺 1− 𝑋 𝐺 𝑐 𝑝𝐹𝐴 + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝𝑀 + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝𝐷 + 𝐹 𝐹𝐺 𝑋 𝐺 𝑐 𝑝𝑊 𝑇 𝑎 = 𝑇 𝑚 − 𝑆 𝑀 𝑋 𝐺 ∆𝐻 𝑟1 ° + 𝑆 𝑀 𝑋 𝐺 ∆𝐻 𝑟2 ° + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝑀 + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝐷 + 𝑋 𝐺 𝑐 𝑝 𝑊 − 1− 𝑋 𝐺 𝑐 𝑝 𝐺 − 1− 𝑋 𝐺 𝑐 𝑝 𝐹𝐴 ( 𝑇 𝑚 −25) 1− 𝑋 𝐺 𝑐 𝑝𝐺 + 1− 𝑋 𝐺 𝑐 𝑝𝐹𝐴 + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝𝑀 + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝𝐷 + 𝑋 𝐺 𝑐 𝑝𝑊
XG Ta(K) 0.1 25.04766 0.2 26.71848 0.3 30.5613 0.4 38.46259 0.5 53.72134 0.6 82.52075 0.7 136.2711 0.8 230.746 0.9 367.7698 1 504.2849
Isothermal heat load can be obtained from 𝑄= 𝑗=1 𝑁 𝑛 𝑗 ∆𝐻 𝑟𝑗 𝑚 + 𝑖=1 𝑀 𝑃 𝑖 𝑐 𝑝𝑖 ( 𝑇 𝑚 −25) 𝑄= 𝑃 𝑀 𝑆 𝑀 𝑋 𝐺 𝑆 𝑀 𝑋 𝐺 ∆𝐻 𝑟1 ° + 𝑆 𝑀 𝑋 𝐺 ∆𝐻 𝑟2 ° + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝑀 + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝐷 + 𝑋 𝐺 𝑐 𝑝 𝑊 − 1− 𝑋 𝐺 𝑐 𝑝 𝐺 − 1− 𝑋 𝐺 𝑐 𝑝 𝐹𝐴 𝑇 𝑚 −25
Determination of Reactors Volumes Cost Operation conditions: Reactor Temperature = 255°C Pressure, PT = 1.063 bar R = 8.3144 kJ.K/kmole
For CSTR;
The annual reactor cost;
LEVEL 4 SYNTHESIS OF CHEMICAL SEPARATION SYSTEM
Distillation Column
Sizing Distillation Column Determination of Minimum Number of Stages Minimum and Actual Reflux Ratio 𝑁 𝑚𝑖𝑛 = 𝑙𝑜𝑔 𝑑 𝐿𝐾 𝑑 𝐻𝐾 𝑏 𝐻𝐾 𝑏 𝐿𝐾 𝑙𝑜𝑔 𝛼 𝑚 𝑅 𝑚𝑖𝑛 = 𝑙𝑜𝑔 𝑥 𝐿𝐻𝑑 𝑑 𝑋𝐻𝐾𝑑 − 𝛼 𝐿𝐾,𝐻𝐾 ( 𝑋 𝐻𝐾𝑑 𝑋 𝐿𝐾 ) 𝛼 𝐿𝐾,𝐻𝐾 −1
Theoretical and Actual Number of Stages The theoretical number of stages, N is calculated by using Gilliland correlation: Calculated column diameter D = 4.9388 m Column Height = 17.0688 m 𝑵− 𝑵 𝑴𝑰𝑵 𝑵+𝟏 =𝟏−𝒆𝒙𝒑 𝟏+𝟓𝟒.𝟒𝒙 𝟏+𝟏𝟏𝟕.𝟐𝒙 𝒙−𝟏 𝒙
Calculation for Distillation Column Component Feed Distillate Bottom Molar flow Mol fraction Distearin 13.8064 0.1648 0.0166 0.0009 13.7898 0.2092 Glycerin 20.1735 0.2408 17.8092 0.9973 2.3643 0.0359 Monostearin 36.1002 0.4309 0.0051 0.0003 36.0952 0.5476 Fatty Acid 13.6934 0.1635 0.0260 0.0015 13.6674 0.2073 Total 83.7736 1.0000 17.8568 65.9167
Fenske ( Nmin) Parameter/Component Glycerol (LK) Monostearin (HK) Distillate Flow Rate, di 17.81 0.01 Bottom Flow Rate,bi 2.36 36.10 (αlk,hk)N 3.190282151 (αlk,hk)1 1.979918231 Nmin 14
Gilliland correlation Calculated column diameter D = 4 Gilliland correlation Calculated column diameter D = 4.9388 m Column Height = 17.0688 m Rmin 1.75 Reflux Ratio, R 2.1 X 0.1129 Y 0.48275 N 28
Cost of Distillation Column Where; A = capacity or size parameter of the equipment K1, K2, K3 = values used in the correlation 𝑙𝑜𝑔 10 𝐶 𝑝 𝑜 = 𝐾 1 + 𝐾 2 𝑙𝑜𝑔 10 𝐴 + 𝐾 3 [ 𝑙𝑜𝑔 10 𝐴 ] 2
EP4 = EP3 - 𝐶 𝑝 𝑜 (distillation column)
LEVEL 5 HEAT INTEGRATION
Heat Exchanger Network Stream Type Tsupply (K) Ttarget (K) Total Heat Capacity Flowrate, FCp (KW/K) Enthalpy Change, ∆H (KW) H1 Hot 498.15 373.15 8.76 -1094.50 H2 328.15 2.37 -402.86 C1 Cold 298.15 0.834 25.011 C2 393.15 5.494 357.124 Total Q available = 2898.458 KW Total Q that must be absorbed = 2898.458 KW
Temperature Intervals Shifted temperature for the hot and cold stream in Pinch Technology Stream Type Tsupply(K) Ttarget(K) TsS TsT ∆T ∆H FCp (KW/K) H1 Hot 498.15 373.15 493.15 368.15 -125 -1094.495 8.756 H2 328.15 323.15 -170 -402.863 2.370 C1 Cold 298.15 30 25.011 0.834 C2 393.15 65 357.124 5.494
Temperature Intervals
Heat transfer to and from utilities for each temperature interval
CHAPTER 3 SIMULATION
CHAPTER 4 MATERIAL AND ENERGY BALANCE
Streams Manual Calculation (kg/hr) Simulation Error Percentage (%) 1 21487.9794 21487.9790 0.00 2 21487.979 3 25862.1917 25918.1794 0.22 4 5 6 7 8 9 1583.3995 1657.9077 4.71 10 11 15.834 17.8594 12.79 12 1567.5655 1640.0483 4.62
Streams Manual Calculation (kg/hr) Simulation Error Percentage (%) 13 2806.6468 2790.4650 0.58 14 4374.2123 4430.5131 1.29 15 16 24278.7922 24260.2717 0.08 17 12882.6244 12938.7256 0.44 18 11396.1678 11321.5461 0.65 19 20 21 22 630.4375 630.035 0.06 23 886.8017 756.042 14.75 24 12626.2602 12812.7186 1.48
THANK YOU
Please follow me / SAJJAD KHUDHUR ABBAS Thanks for Watching Please follow me / SAJJAD KHUDHUR ABBAS