Oxidation Numbers Rules for Assigning Oxidation States

Slides:



Advertisements
Similar presentations
Chpater 4 Oxidation-Reduction
Advertisements

Unit 11- Redox and Electrochemistry
Oxidation Reduction Reactions
(c) 2006, Mark Rosengarten Voltaic Cells  Produce electrical current using a spontaneous redox reaction  Used to make batteries!batteries  Materials.
Oxidation-Reduction Reactions LEO SAYS GER. Oxidation and Reduction (Redox)  Electrons are transferred  Spontaneous redox rxns can transfer energy 
Oxidation Reduction Chemisty: Redox Chemistry
VIII. Oxidation-Reduction J Deutsch An oxidation-reduction (redox) reaction involves the transfer of electrons (e - ). (3.2d) The oxidation numbers.
Electrochemistry Chapter and 4.8 Chapter and 19.8.
Oxidation- Reduction Ms. Randall. Lesson 2: Recognizing Oxidation-Reduction Reactions Objective: To identify redox reactions based on the changes of oxidation.
Redox: Oxidation and Reduction Definitions Oxidation: loss of e- in an atom increase in oxidation number (ex: -1  0 or +1  +2)  Reduction: gain of.
Aim Redox 1 – Why is redox so important in your life?
Oxidation-Reduction Reactions LEO SAYS GER. Oxidation and Reduction (Redox) Electrons are transferred Spontaneous redox rxns can transfer energy Electrons.
Chapter 20 – Redox Reactions One of the earliest recognized chemical reactions were with oxygen. Some substances would combine with oxygen, and some would.
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry.
Electrochemistry and Redox Reactions. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Oxidation Numbers Positive oxidation number Negative oxidation number - Loses partial or total control of electrons in a bond - Gains partial or total.
JUST REMEMBER... “OIL RIG” (oxidation is losing, reduction is gaining)
1 Oxidation-Reduction AKA Redox OB: Pages
Redox Reactions Year 11 Chemistry ~ Unit 2.
Oxidation Loss of electrons. Reduction Gain of electrons.
Redox and Electrochemistry. Redox Reactions Reduction – Oxidation reactions Involve the transfer of electrons from one substance to another The oxidation.
a.k.a Electrochemistry a.k.a. Oxidation-Reduction Redox!
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
(Redox).  1. Synthesis  2. Decomposition  3. Single Replacement  4. Double Replacement  * Combustion.
Oxidation & Reduction IB Chemistry. Oxidation Numbers Rules for Assigning Oxidation Numbers 1Oxidation numbers always refer to single ions 2The oxidation.
Oxidation Reduction. Definitions ► Oxidation- an element has lost electrons to another element. ► Reduction- an element gains electrons from another element.
UNIT 10: REDOX How can we assign oxidation numbers? How can we recognize a RedOx reaction? How can we identify which species is oxidized/reduced? How can.
Balancing Redox Equations – Voltaic (Galvanic) Cells.
CE Chemistry Module 8. A. Involves electron changes (can tell by change in charge) Cl NaBr 2NaCl + Br 2 B. Oxidation 1. First used.
Chapter 18 Electrochemistry Lesson 1. Electrochemistry 18.1Balancing Oxidation–Reduction Reactions 18.2 Galvanic Cells 18.3 Standard Reduction Potentials.
Oxidation and Reduction Reactions Chapters 20 and 21.
Oxidation-Reduction (aka Redox) Reactions These are electron- transfer reactions! om/ICT/rr/redox1.html.
REDOX REACTIONS. REDUCTION Previously: What happened to oxygen when it reacted – During reactions oxygen would take on electrons Now: When any element.
Assigning Oxidation Numbers RULESExamples 2Na + Cl 2  2NaCl Na = 0 or written Na 0 Cl 2 = 0 or written Cl 2 0 RULESExamples 1. Each Uncombined Element.
Redox comes from the two words oxidation and reduction. Oxidation: Loss of electrons. When things lose electrons, they become positive. We learned that.
a.k.a. Oxidation-Reduction
Topic 9 Oxidation and Reduction.
Assigning Oxidation Numbers
Unit 9: Oxidation, Reduction, and Electrochemistry
Redox in Action: Voltaic cells
CHEMISTRY CHAPTER 19 LEO SAYS GER
Single & Double Displacement Reactions
Electrochemistry Chapter 19
When magnesium burns in the presence of oxygen the octet rule explains why magnesium & oxygen come toghether. Mg has 2 valence and O has 6….
Oxidation-Reduction Reactions
Redox: Oxidation and Reduction
Oxidation Numbers Elemental form of an atom = 0
Zn(s) + CuSO4(aq)→ ZnSO4 (aq) + Cu(s)
Single & Double Displacement Reactions
Oxidation-Reduction Chapter 17
Oxidation Reduction Chemistry
Oxidation-Reduction Reactions
Oxidation Reduction Chemisty: Redox Chemistry
Electrochemistry- Balancing Redox Equations
Reduction - Oxidation Chapters
Redox & Electrochemistry.
Oxidation/Reduction (REDOX) Reference Table: Periodic Table & J
Electrochemistry Chapter 19
Oxidation-Reduction Reactions
Redox Reactions.
Unit 13: Electrochemistry
18.2 Balancing Oxidation-Reduction Equations
IX. Oxidation-Reduction
REVIEW BOOK TOPIC 9 RED OX.
Electrochemistry Chapter 20.
Chapter 21 Thanks to D Scoggin Cabrillo College
OXIDATION AND REDUCTION
Oxidation, Reduction, and Electrochemistry
What is a redox reaction?
Presentation transcript:

Oxidation Numbers Rules for Assigning Oxidation States The oxidation state of an atom in an uncombined element is 0. The oxidation state of a monatomic ion is the same as its charge. Oxygen is assigned an oxidation state of –2 in most of its covalent compounds. Important exception: peroxides (compounds containing the O2 2- group), in which each oxygen is assigned an oxidation state of –1) In its covalent compounds with nonmetals, hydrogen is assigned an oxidation state of +1 For a compound, sum total of ON s is zero. For an ionic species (like a polyatomic ion), the sum of the oxidation states must equal the overall charge on that ion.

Redox: Reduction occurs when an atom gains one or more electrons. Ex:   Oxidation occurs when an atom or ion loses one or more electrons. LEO goes GER Copper metal reacts with silver nitrate to form silver metal and copper nitrate: Cu + 2 Ag(NO3)  2 Ag + Cu(NO3)2.

Identifying OX, RD, SI Species Ca0 + 2 H+1Cl-1  Ca+2Cl-12 + H20 Oxidation = loss of electrons. The species becomes more positive in charge. For example, Ca0  Ca+2, so Ca0 is the species that is oxidized. Reduction = gain of electrons. The species becomes more negative in charge. For example, H+1  H0, so the H+1 is the species that is reduced. Spectator Ion = no change in charge. The species does not gain or lose any electrons. For example, Cl-1  Cl-1, so the Cl-1 is the spectator ion.

Oxidizing Agent and Reducing Agent: Oxidizing agent gets reduced itself and reducing agent gets oxidized itself, so a strong oxidizing agent should have a great tendency to accept e and a strong reducing agent should be willing to lose e easily. What are strong oxidizing agents- metals or non metals? Why? Which is the strongest oxidizing agent and which is the strongest reducing agent?

Agents Ca0 + 2 H+1Cl-1  Ca+2Cl-12 + H20 Since Ca0 is being oxidized and H+1 is being reduced, the electrons must be going from the Ca0 to the H+1. Since Ca0 would not lose electrons (be oxidized) if H+1 weren’t there to gain them, H+1 is the cause, or agent, of Ca0’s oxidation. H+1 is the oxidizing agent. Since H+1 would not gain electrons (be reduced) if Ca0 weren’t there to lose them, Ca0 is the cause, or agent, of H+1’s reduction. Ca0 is the reducing agent.

Steps for Balancing a Redox Reaction: Half Reaction Method In half reaction method, oxidation and reduction half- reactions are written and balanced separately before combining them into a balanced redox reaction. It is a good method for balancing redox reactions because this method can be used both for reactions carried out in acidic and basic medium .

Steps for Balancing Redox Reaction Using Half Reaction Method IN ACIDIC MEDIUM: Step 1: Write unbalanced equation in ionic form. Step 2: Write separate half reactions for the oxidation and reduction processes. (Use Oxidation Numbers for identifying oxidation and reduction reactions) Step 3: Balance atoms in the half reactions First, balance all atoms except H and O Balance O by adding H2O Balance H by adding H+ Step 4: Balance Charges on each half reaction, by adding electrons. Step 5: Multiply each half reaction by an appropriate number to make the number of electrons equal in both half reactions. Step 6: Add two half reactions and simplify where possible by canceling species appearing in both sides. Step 7: Check equation for same number of atoms and charges on both sides.

Writing Half-Reactions Ca0 + 2 H+1Cl-1  Ca+2Cl-12 + H20 Oxidation: Ca0  Ca+2 + 2e- Reduction: 2H+1 + 2e-  H20 The two electrons lost by Ca0 are gained by the two H+1 (each H+1 picks up an electron). PRACTICE SOME!

Practice Half-Reactions Don’t forget to determine the charge of each species first! 4 Li + O2  2 Li2O Oxidation Half-Reaction: Reduction Half-Reaction: Zn + Na2SO4  ZnSO4 + 2 Na

Steps for Balancing Redox Reaction Using Half Reaction Method IN BASIC MEDIUM: For balancing redox reactions in basic solutions, all the steps are the same as acidic medium balancing, except you add one more step to it. The H+ ions can then be “neutralized” by adding an equal number of OH- ions to both sides of the equation. Ex.

Standard Cell Potential Just as the water tends to flow from a higher level to a lower level, electrons also move from a higher “potential” to a lower potential. This potential difference is called the electromotive force (EMF) of cell and is written as Ecell. The standard for measuring the cell potentials is called a SHE (Standard Hydrogen Electrode). Description of SHE (Standard Hydrogen Electrode) Reaction 2H+(aq, 1M)+ 2e - H2(g, 101kPa) E0= 0.00 V

Standard Reduction Potentials Many different half cells can be paired with the SHE and the standard reduction potentials for each half cell is obtained. Check the table for values of reduction potential for various substances: Would substances with high reduction potential be strong oxidizing agents or strong reducing agents? Why?

Activity Series For metals, the higher up the chart the element is, the more likely it is to be oxidized. This is because metals like to lose electrons, and the more active a metallic element is, the more easily it can lose them. For nonmetals, the higher up the chart the element is, the more likely it is to be reduced. This is because nonmetals like to gain electrons, and the more active a nonmetallic element is, the more easily it can gain them.

Metal Activity 3 K0 + Fe+3Cl-13 REACTION Metallic elements start out with a charge of ZERO, so they can only be oxidized to form (+) ions. The higher of two metals MUST undergo oxidation in the reaction, or no reaction will happen. The reaction 3 K + FeCl3  3 KCl + Fe WILL happen, because K is being oxidized, and that is what Table J says should happen. The reaction Fe + 3 KCl  FeCl3 + 3 K will NOT happen. Fe0 + 3 K+1Cl-1 NO REACTION

Voltaic Cells (Galvanic Cells) A voltaic cell converts chemical energy from a spontaneous redox reaction into electrical energy. Ex: Cu and Zn voltaic cell (More positive reduction potential is the cathode) Key Words: Cathode Anode Salt Bridge How a Voltaic Cell Works: An Ox, Red Cat Representing Electrochemical Cells

Voltaic Cells Produce electrical current using a spontaneous redox reaction Used to make batteries! Materials needed: two beakers, piece of the metals (anode, - electrode and cathode + electrode), solution of each metal, porous material (salt bridge), solution of a salt that does not contain either metal in the reaction, wire and a load to make use of the generated current! Use Reference Table J to determine the metals to use Higher = (-) anode (lower reduction potential) Lower = (+) cathode (higher reduction potential)

Making Voltaic Cells

Electrolytic Cells Use electricity to force a nonspontaneous redox reaction to take place. Uses for Electrolytic Cells: Decomposition of Alkali Metal Compounds Decomposition of Water into Hydrogen and Oxygen Electroplating Differences between Voltaic and Electrolytic Cells: ANODE: Voltaic (-) Electrolytic (+) CATHODE: Voltaic (+) Electrolytic (-) Voltaic: 2 half-cells, a salt bridge and a load Electrolytic: 1 cell, no salt bridge, IS the load

Decomposing Alkali Metal Compounds 2 NaCl  2 Na + Cl2 The Na+1 is reduced at the (-) cathode, picking up an e- from the battery The Cl-1 is oxidized at the (+) anode, the e- being pulled off by the battery (DC)

Decomposing Water 2 H2O  2 H2 + O2 The H+ is reduced at the (-) cathode, yielding H2 (g), which is trapped in the tube. The O-2 is oxidized at the (+) anode, yielding O2 (g), which is trapped in the tube.

Electroplating The Ag0 is oxidized to Ag+1 when the (+) end of the battery strips its electrons off. The Ag+1 migrates through the solution towards the (-) charged cathode (ring), where it picks up an electron from the battery and forms Ag0, which coats on to the ring.

Spontaneity of Redox Reactions: E0 = E0red( reduction process-cathode) – E0red (oxidation process-anode) A positive value of E0 indicates a spontaneous process and a negative value of E0 indicates a nonspontaneous value. Steps for Predicting Spontaneity of Redox Reactions First write the reaction as oxidation and reduction half reactions. Then plug standard reduction potential values in the equation given above. Check for the spontaneity by a positive or a negative value of E0 Ex: