Distribution of Phases of the ISM - and how to see them

Slides:



Advertisements
Similar presentations
Cold dust in the Galactic halo: first detection of dust emission in a high-velocity cloud : Francois Boulanger et Marc-Antoine Miville-Deschênes Miville.
Advertisements

H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
The Thermostat Problem Rok Roskar Nick Cowan December 9 th 2004 Rok Roskar Nick Cowan December 9 th 2004.
DUST AND MOLECULES IN SPIRAL GALAXIES as seen with the JCMT F.P. Israel, Sterrewacht Leiden.
The ISM structure of low-metallicity star-forming dwarf galaxies Diane Cormier ITA, ZAH, University of Heidelberg – group of Frank Bigiel Suzanne Madden,
The Distribution of the Milky Way ISM as revealed by the [CII] 158um line. Jorge L. Pineda Jet Propulsion Laboratory, California Institute of Technology.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
Heating and Cooling 10 March 2003 Astronomy G Spring 2003 Prof. Mordecai-Mark Mac Low.
PRISMAS PRISMAS PRobing InterStellar Molecules with Absorption line Studies M. Gerin, M. Ruaud, M. de Luca J. Cernicharo, E. Falgarone, B. Godard, J. Goicoechea,
2. 1 Yes, signal! Physical Properties of diffuse HI gas in the Galaxy from the Arecibo Millennium Survey T. H. Troland Physics & Astronomy Department.
Molecular Tracers of Turbulent Shocks in Molecular Clouds Andy Pon, Doug Johnstone, Michael J. Kaufman ApJ, submitted May 2011.
Submillimeter Astronomy in the era of the SMA, 2005, Cambridge, MA Observations of Extragalactic Star Formation in [CI] (370  m) and CO J=7-6 T. Nikola.
[C II] 158  m Emission from Damped Ly  Systems Art Wolfe and Ken Nagamine UCSD UCSD.
Krakow 2010 Galactic magnetic fields: MRI or SN-driven dynamo? Detlef Elstner Oliver Gressel Natali Dziourkevich Alfio Bonanno Günther Rüdiger.
Jonathan Slavin Harvard-Smithsonian CfA
[OI] and [NII] Observations of Relevance to STO Gordon Stacey.
A Herschel Galactic Plane Survey of [NII] Emission: Preliminary Results Paul F. Goldsmith Umut Yildiz William D. Langer Jorge L. Pineda Jet Propulsion.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
Dynamics of Multi-Phase Interstellar Medium Shu-ichiro Inutsuka (Nagoya Univ) Thanks to Hiroshi Koyama (Univ. Maryland) Tsuyoshi Inoue (Kyoto Univ.) Patrick.
Stratospheric Terahertz Observatory (STO)‏ 0.8-meter telescope, 1' um Heterodyne receiver arrays for wide-field [N II] and [C II] spectroscopy,
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions I. Physical conditions.
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
C + As a Primary Coolant and Tracer of Star Formation Dec 21 st, 2012.
CO, CS or other molecules? Maria Cunningham, UNSW.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
The Meudon PDR code on MHD simulations F. Levrier P. Hennebelle, E. Falgarone, M. Gerin, B. Ooghe (LERMA - ENS) F. Le Petit (LUTH - Observatoire de Paris)
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON),
VNGS science highlight: PDR models of M51 [CII]/[OI]63 ([CII]+[OI]63)/F TIR Similar gas properties in arm and interarm regions. Higher densities and stronger.
The Three-Phase Interstellar Medium
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Direct Physical Diagnostics of Triggered Star Formation Rachel Friesen NRAO Postdoctoral Fellow North American ALMA Science Center C. Brogan, R. Indebetouw,
Photodissociation Regions Amiel Sternberg School of Physics & Astronomy Tel Aviv University ISRAEL Dense ISM in Galaxies Zermatt Switzerland September.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
[CII] mapping of the diffuse ISM with SPICA / SAFARI F. Levrier P. Hennebelle P. Lesaffre M. Gerin E. Falgarone (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
What we look for when we look for the dark gas * John Dickey Wentworth Falls 26 Nov 2013 *Wordplay on a title by Raymond Carver, "What we talk about, when.
Structure and Stability of Phase Transition Layers in the Interstellar Medium Tsuyoshi Inoue, Shu-ichiro Inutsuka & Hiroshi Koyama 1 12 Kyoto Univ. Kobe.
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
Motivation it is a key diagnostic of the ISM because: [CII] is the dominant cooling line of the ISM.
The Meudon PDR code on complex ISM structures F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire de Paris)
Jet Propulsion Laboratory
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Simulated [CII] 158 µm observations for SPICA / SAFARI F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
Turbulence and Magnetic Field Amplification in the Supernova Remnants Tsuyoshi Inoue (NAOJ) Ryo Yamazaki (Hiroshima Univ.) Shu-ichiro Inutsuka (Kyoto Univ.)
Star Formation in Damped Lyman alpha Systems Art Wolfe Collaborators: J.X. Prochaska, J. C. Howk, E.Gawiser, and K. Nagamine.
SOFIA and the ISM of Galaxies Xander Tielens & Jessie Dotson Presented by Eric Becklin.
First high-resolution 3D inversion of the dust emission in Galactic ISM with Spitzer/Herschel. The case region [l,b]=[30,0] A. Traficante, R. Paladini,
On the structure of the neutral atomic medium Patrick Hennebelle Ecole Normale supérieure-Observatoire de Paris and Edouard Audit Commissariat à l’énergie.
Dynamics of Multi-Phase Interstellar Medium Shu-ichiro Inutsuka (Kyoto Univ.) Collaboration with Hiroshi Koyama (Univ. Maryland) Tsuyoshi Inoue (Kyoto.
Takashi Hosokawa ( NAOJ ) Daejeon, Korea Shu-ichiro Inutsuka (Kyoto) Hosokawa & Inutsuka, astro-ph/ also see, Hosokawa & Inutsuka,
Phases et turbulence dans le milieu interstellaire Patrick Hennebelle Edouard Audit (CEA, Saclay) Shu-ichiro Inutsuka (Kyoto University), Robi Banerjee.
Flow-Driven Formation of Molecular Clouds: Insights from Numerical Models The Cypress Cloud, Spitzer/GLIMPSE, FH et al. 09 Lee Hartmann Javier Ballesteros-Paredes.
Herschel View of the Warm Molecular Gas in the LMC Star-forming region N159W Min-Young Lee CEA-Saclay, France Collaborators S. Madden, V. Lebouteiller,
The CO SED and molecular gas properties in Early-Type Galaxies (ETGs)
ALMA observations of Molecules in Supernova 1987A
The Interstellar Medium and Star Formation
Ay126: Fine Structure Line Emission from the Galaxy
SN 1987A: The Formation & Evolution of Dust in a Supernova Explosion
Filamentary Structures Traced by IRDCs
CCAT Studies of Nearby Galaxies
Excitation of H2 in NGC 253 Marissa Rosenberg
The Interstellar Medium and Star Formation
A Cold, Nearby Cloud in the Local Bubble
Thin, Cold Strands of Hydrogen in the Riegel-Crutcher Cloud
Infrared Universe to be seen by QDs
Galactic Astronomy 銀河物理学特論 I Lecture 1-6: Multi-wavelength properties of galaxies Seminar: Draine et al. 2007, ApJ, 663, 866 Lecture: 2011/11/14.
Properties of the thinnest cold HI clouds in the diffuse ISM
Presentation transcript:

Distribution of Phases of the ISM - and how to see them 1.) Definition of Phases – thermal plus non-thermal 2.) ISM Questions? 3.)Theory and Observations for answers 4.)Summary points

Definition of Phases Diffuse ionized gas [N II], T ~ 8000 K Warm neutral gas [C II], [O I], T ~ 8000K Cold neutral gas [C II], [O I], T ~ 100 K Molecular clouds [C II], [O I], [C I], T ~ 100 K Molecular clouds CO, low J molecules Bright SF regions [C II], [O I], [C I], H2 , high J molecules T ~ 300 K More Phases! “Dark” molecular gas - GMCs H2 but no CO [CII], IR Short lived/Transient phases (shocks, shears, turbulence) [CII], OI, H2

ISM Questions? 1.)What dominates the [CII] emission? 2.)What is the ISM engine? Where is the CNM/WNM? R and z? Constrains role of SN in Pth, fV, shock processing 3.)What is the porosity of ISM for ionizing photons? 4.)Formation/destruction processes and lifetimes of GMCs? 5.)How much mass is in C+/H2 regions (with no CO)? 6.)What is the roll of turbulence in heating, density, and topology?

Bennett et al 1994, COBE FIRAS 7o beam Wright et al. 1991 Line log L [C II] 158 mm 7.7 [N II] 121 mm 6.9 [N II] 205 mm 6.7 [C I] 370 mm 5.5 [C I] 610 mm 5.3 What produces the [CII] emission? WIM – Heiles 1994 CNM – Bennett et al. 1994 GMC – Stacey et al. 1985; Shibai et al. 1991 Cubick et al 2008 [CII]

Bennett et al 1994, COBE FIRAS 7o beam Diffuse ionized gas [CII] [CII] T = 8000 K Cygnus X [CII] from [NII] [NII] Inferred ne Steiman-Cameron et al. 2008

nG = n2L T Ionization: FUV, X-ray, C.R. Heating: P.E., C.R., X-ray/EUV Wolfire, McKee, Hollenbach, & Tielens (2003) Ionization: FUV, X-ray, C.R. Heating: P.E., C.R., X-ray/EUV Cooling: [CII], [OI], Lya, e- recombination = nT WNM stable CNM stable unstable nG = n2L T T = 7860 n = 0.35 cm-3 WNM T = 85 n = 33 cm-3 CNM

C II Cooling/H (CNM) > 10 CII Cooling/H (WNM) Wolfire, McKee, Hollenbach, & Tielens (2003) = nT Pmax Pmin Grain photoelectric 158 mm C II Cooling/H (CNM) > 10 CII Cooling/H (WNM) 63 mm C II emission isolates the CNM clouds! Previously seen only in absorption.

CNM Cloud Distribution Estimate the CNM contribution to the [C II] emission. With H I get CNM/WNM mass distribution. If SNR dominate the topology then MCNM > MWNM If SNR are small MCNM < MWNM With HI get the thermal pressure in clouds. Compare Pth in arm and interarm regions and f(R). Expected for TI: Does CNM/WNM as Pth ? Does WNM at Pth >> Pmax ? Dynamical Processes t < ttcooling WNM at Pth >> Pmax ? CNM at Pth << Pmin ? 158 mm 63 mm Kulkarni & Heiles 1987

For CNM/WNM and Pth: CII maps, NII maps, HI maps, CO maps Galactic: STO, SOFIA, Herschel, MOPRA 1)Compare position, velocity, line width in CII and NII - Get CII in WIM and subtract from total 2)Compare position, velocity in CII and HI maps - Get CII in HI gas 3)CO maps: MOPRA -Get CII in CNM 4)CII cooling/H -> Pth STO – heterodyne on balloon flight CII, NII mapping region -20o > l > -55o; -0.5o < b < 0.5o 1)For theory need FUV : COBE, WISE, SOFIA

For CNM/WNM and Pth: CII maps, OI maps , NII maps, HI maps CO, H2 Extragalactic: SOFIA, Herschel, Spitzer CARMA, ALMA 1)Compare position, velocity in CII, OI, NII CO, H2 - Get CII in high n, H2 gas Kaufman et al, 2006 2)Estimate CII emission from NII maps Wolfire, Hollenbach, Neufeld, 2009 in prep Oberst et al. 2006 3)CII cooling/H -> Pth But HI is CNM + WNM ! 1)For theory need FUV : Herschel dust continuum

For CNM/WNM and Pth: CII maps, OI maps , NII maps, HI maps CO, H2 Wolfire, Hollenbach, Neufeld 2009 For CNM/WNM and Pth: CII maps, OI maps , NII maps, HI maps CO, H2 STO beam averaged I Extragalactic: SOFIA, Herschel, Spitzer CARMA, ALMA 1)Compare position, velocity in CII, OI, NII CO, H2 - Get CII in high n, H2 gas Kaufman et al, 2006 2)Estimate CII emission from NII maps Wolfire, Hollenbach, Neufeld, 2009 in prep Oberst et al. 2006 NII 205 Oberst et al 06 RCW49 3)CII cooling/H -> Pth But HI is CNM + WNM ! Carina 1)For theory need FUV : Herschel dust continuum

For CNM/WNM and Pth: CII maps, OI maps , NII maps, HI maps CO, H2 Wolfire, Hollenbach, Neufeld 2009 For CNM/WNM and Pth: CII maps, OI maps , NII maps, HI maps CO, H2 STO beam averaged I Extragalactic: SOFIA, Herschel, Spitzer CARMA, ALMA 1)Compare position, velocity in CII, OI, NII CO, H2 - Get CII in high n, H2 gas Kaufman et al, 2006 2)Estimate CII emission from NII maps Wolfire, Hollenbach, Neufeld, 2009 in prep Oberst et al. 2006 NII 205 Oberst et al 06 RCW49 3)CII cooling/H -> Pth But HI is CNM + WNM ! Carina 1)For theory need FUV : Herschel dust continuum

Are There Phases in the ISM? Vazquez-Semadeni 2009 50% of gas mass in unstable Ts ??? Really 25% of WNM in unstable Ts or 15% of total mass. In plane dominated by TI. Out of plane by dynamical processes. Numerical Simulations No or weak TI: Vazquez-Semadini et al. 2000, Gazol et al. 2001, Gazol 2005 Significant TI: Piontek and Ostriker 2005, Audit and Hennebelle 2005 Hennebelle and Audit 2007 Koyama and Ostriker 2009 Heiles & Troland 2003, ApJ, 586, 1067

= tcool/tshock >> 1 Turb << 1 TI ~ 0.3 WNM ~ 0.1 CNM Model resolution Size of region Heating/Cooling Type and amplitude of turbulence 11 km/s 4 km/s 9 km/s Gazol et al 05 Koyama & Ostriker 09 Vturb(L) ~ La Pth(L) = Pturb(L) = tcool/tshock >> 1 Turb << 1 TI ~ 0.3 WNM ~ 0.1 CNM T n Thermal Pressure Dominates in the CNM/WNM interface and for fairly large regions in WNM!

<Tspin> = < n > = TCNM / fCNM < k > < n > Wolfire et al. 2003 <Tspin> 400 K 10 % < fCNM < 25 % Dickey et al. 2009

NII maps, CO maps: Ionization sources and porosity of ISM GMC destruction Galactic and Extragalactic: SOFIA, STO, Herschel, Spitzer, CARMA, ALMA RCW49 Whitney et al. 2004 IRAC composite map NII: Trace absorption of ionizing photons Measure the photoionization of GMCs NGC 891 Rand, Wood, & Benjamin 2008 Lyman alpha greyscale and Spitzer IRS slits

Ntot - NHI - NCO = N Dark Gas Dark Gas: H2 but no CO NH2 Ntot - NHI - NCO = N Dark Gas IRAS IR Continuum Leroy, Bolatto et al.2007 ~ 30 times more H2 SMC Grenier et al. 2005 ~ 30% more H2 - Star Formation and Schmidt Law Krumholz et al. 2009 - H2 formation Wolfire et al. 2009 - Dark Gas Herschel, SOFIA: IR Continuum, CII CARMA, ALMA: CO IRAM, APEX: CF+ Neufeld et al. 2006, 2009.

Shears, Turbulence, and Shocks Cooling is dominated by H2 and [C II]. 0.05 pc 45’’ in width D v - 40/km/s/pc 2006, IAUS 237 Herschel: [C II] and Velocity profile Wide spread H2 emission in galaxies from PDRs? Roussel et al. 2007 Herschel, SOFIA: CII, OI PDRs or Shocks? High n, low FUV indicates shocks Total cooling output = Radiative + Mechanical input

GMC Formation/Destruction/Lifetimes Are GMCs short lived and transient? Hartmann et al. 2001 Or long lived stable structures? Scoville and Wilson 2004 Formation: CNM cloud map and CO map Photodissociated by OB stars? Williams and McKee 1997 Shredded by shear? Koda et al. 2009 Destruction: NII, CO maps M51 CO Map using CARMA Koda et al. 2009

Summary - CII from STO, SOFIA, Herschel 1)Velocity resolved observations map the CNM in emission 2)Get CNM/WNM distributions to test global ISM models 3)Map the Pth in the ISM and test TI or turbulence 4)Test models of GMC formation from cold gas 5)Test models of GMC destruction (neutral outflows) - NII from STO, SOFIA, Herschel 1)Test models of GMC destruction (photoionized outflows) -CII, OI, CI, CO 1)Trace energy flow into the gas (photon or mechanical) -CII, HI, CO, IR 1)Search for dark gas components