Ultra Wideband Power Amplifiers in 130 nm InP HBT Technology

Slides:



Advertisements
Similar presentations
An NLTL based Integrated Circuit for a GHz VNA System
Advertisements

High efficiency Power amplifier design for mm-Wave
Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
CSICS 2013 Monterey, California A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25μm InP DHBT Technology Saeid Daneshgar, Prof. Mark Rodwell.
T. Chalvatzis, University of Toronto - ESSCIRC Outline Motivation Decision Circuit Design Measurement Results Summary.
40Gbit/s Coherent Optical Receiver Using a Costas Loop
1/42 Changkun Park Title Dual mode RF CMOS Power Amplifier with transformer for polar transmitters March. 26, 2007 Changkun Park Wave Embedded Integrated.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Distributed Power Amplifiers-Output Power and Efficiency Considerations Prasad N. Shastry (S. N. Prasad) 1, Senior Member, IEEE, and Amir S. Ibrahim 2.
Polar Loop Transmitter T. Sowlati, D. Rozenblit, R. Pullela, M. Damgaard, E. McCarthy, D. Koh, D. Ripley, F. Balteanu, I. Gheorghe.
Slide 19/3/2002 S. Xie, V. Paidi, R. Coffie, S. Keller, S. Heikman, A. Chini, U. Mishra, S. Long, M. Rodwell Department of Electrical and Computer Engineering,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
Design of Microwave Power Amplifier with ADS Technische Universität Berlin Fachgebiet Mikrowellentechnik Daniel Gruner, Ahmed Sayed, Ahmed Al Tanany,
2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected.
LECTURE 4. HIGH-EFFICIENCY POWER AMPLIFIER DESIGN
An Ultra-Wideband CMOS Low Noise Amplifier for 3–5-GHz UWB System
Chart 1 A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio Zach Griffith, M. Urteaga, R. Pierson, P. Rowell,
48.8mW Multi-cell InP HBT Amplifier with on-wafer power combining at 220GHz Thomas Reed, Mark Rodwell University of California, Santa Barbara Zach Griffith,
ECE1352F University of Toronto 1 60 GHz Radio Circuit Blocks 60 GHz Radio Circuit Blocks Analog Integrated Circuit Design ECE1352F Theodoros Chalvatzis.
Technical Interests on the SKA Noriyuki Kawaguchi National Astronomical Observatory of Japan SKA Workshop November 5, 2010.
University of Toronto (TH2B - 01) 65-GHz Doppler Sensor with On-Chip Antenna in 0.18µm SiGe BiCMOS Terry Yao, Lamia Tchoketch-Kebir, Olga Yuryevich, Michael.
A 77-79GHz Doppler Radar Transceiver in Silicon
Seoul National University CMOS for Power Device CMOS for Power Device 전파공학 연구실 노 영 우 Microwave Device Term Project.
New MMIC-based Millimeter-wave Power Source Chau-Ching Chiong, Ping-Chen Huang, Yuh-Jing Huang, Ming-Tang Chen (ASIAA), Shou-Hsien Weng, Ho-Yeh Chang (NCUEE),
Microwave Filters Filters allow some frequencies to go through while block the remaining In receivers, the system filters the incoming signal right after.
Single-stage G-band HBT Amplifier with 6.3 dB Gain at 175 GHz M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department of Electrical.
A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology
GHZ Wireless: Transistors, ICs, and System Design Plenary, 2014 German Microwave Conference, March, Aachen.
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
1 Integrated Circuits for Wavelength Division De-multiplexing in the Electrical Domain 1 H.C. Park, 1 M. Piels, 2 E. Bloch, 1 M. Lu, 1 A. Sivanathan, 3.
ADS Design Guide.
Student Paper Finalist TU3B-1
High-Speed Track-and-Hold Circuit Design October 17th, 2012 Saeid Daneshgar, Prof. Mark Rodwell (UCSB) Zach Griffith (Teledyne)
A 1.5-V 6-10-GHz Low LO-Power Broadband CMOS Folded-Mirror Mixer for UWB Radio H.-W. Chung, H.-C. Kuo, and H.-R. Chuang Institute of Computer and Communication.
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
Final Project in RFCS in the MINT Program of the UPC by Sven Günther
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
A High-Gain, Low-Noise, +6dBm PA in 90nm CMOS for 60-GHz Radio
Proposed Versatile 1.2 to 14 GHz Radio Telescope Receiver S. Weinreb, JPL/Caltech, Draft July 5, 2005 Contents 1.Introduction and intended applications.
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
MMIC design activities at ASIAA Chau-Ching Chiong, Ping-Chen Huang, Yuh-Jing Huang, Ming-Tang Chen (ASIAA), Ho-Yeh Chang (NCUEE), Ping-Cheng Huang, Che-Chung.
Jinna Yan Nanyang Technological University Singapore
Amplifiers Amplifier Parameters Gain = Po/Pi in dB = 10 log (Po/Pi)
© Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 2.5V, 77-GHz, Automotive Radar Chipset Sean T. Nicolson 1, Keith A. Tang 1, Kenneth H.K. Yau 1, Pascal.
EMBRACE receiver 8th SKADS Board Meeting Château de Limelette, Belgium, 3 November 2009 DS5 EMBRACE IRA&ASTRON DS5 Eng. Group Presentation by Jader Monari.
A 20/30 Gbps CMOS Backplane Driver with Digital Pre-emphasis Paul Westergaard, Timothy Dickson, and Sorin Voinigescu University of Toronto Canada.
Outline Background Hot-Carrier-Induced Issues
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
December 1997 Circuit Analysis Examples 걼 Hairpin Edge Coupled Filter 걼 Bipolar Amplifier 걼 Statistical Analysis and Design Centering 걼 Frequency Doubler.
Broadcasting devices. Broadcasting devices overview USB Power Monitor, type channel, 4-line display, USB, Digital out, Opto out WEB Power Monitor,
VI. HIGH-EFFICIENCY SWITCHMODE HYBRID AND MMIC POWER AMPLIFIERS:
Integrated Phased Array Systems in Silicon
Classification of PAs: linear vs. switching
Prospects for Multi-THz III-V Transistors
Transimpedance Amplifiers in CMOS Technology
Ultra-low Power Components
Communication 40 GHz Anurag Nigam.
A High-Dynamic-Range W-band
Input Stages for Radio Systems (Low Noise Amplifiers) (LNAs)
Introducing: LTC5553 A 3GHz to 20GHz Microwave Mixer with Integrated LO Buffer ©2017 Analog Devices, Inc. All rights reserved.
X-band high-power variable RF splitter
High-linearity W-band Amplifiers in 130 nm InP HBT Technology
A low-power CMOS power amplifier for ultra wideband (UWB) applications
Integrated Solutions for 5G Frequency-Division and Full Duplex Systems
5.8GHz CMOS 射頻前端接收電路 晶片設計實作 5.8GHz CMOS Front-End Circuit Design
Broadband Lateral Tapered Structures for Improved Bandwidth and Loss Characteristics for All-Optical Wavelength Converters Xuejin Yan, Joe Summers, Wei.
Broadband Lateral Tapered Structures for Improved Bandwidth and Loss Characteristics for All-Optical Wavelength Converters Xuejin Yan, Joe Summers, Wei.
High frequency signal source with characteristics suitable for THz Applications and Measurements(VNA) Department of Communication Engineering research.
Presentation transcript:

Ultra Wideband Power Amplifiers in 130 nm InP HBT Technology Robert Maurer1, Seong-Kyun Kim1, Miguel Urteaga2, and Mark J. W. Rodwell1 UC Santa Barbara1 Teledyne Scientific Company2 CSICS 2016 Austin, TX

Motivation Broadly-tunable high-dynamic-range dual conversion receiver Passive mixer IP3 determined by LO drive power Receiver bandwidth limited by LO driver bandwidth

Design Goals Need to design a power amplifier with: Wide bandwidth ( ~50 GHz -100 GHz) High output power ( > 21dBm) Preferably with: Limited size High power efficiency

Design Strategy How can we achieve such a large bandwidth without sacrificing performance? 2 Key Factors:   2) Sub-λ/4 balun series power combining2 Simultaneous output matching & power combining Compact, wide-band, low-loss power combining M. Urteaga, et. al. DRC 20111, H. Park, et. al. IEEE JSSC, 20142

TSC 130 nm InP HBTs Max output tuning bandwidth:     Max output tuning bandwidth: HBT ~CCB LStub RLoad   Low CCB  High Δfoutput Intrinsic

Sub-λ/4 Baluns 3-metal transmission line power combiner (m1, m2, m3) ZL m1 m2 m3 V1 V2 3-metal transmission line power combiner (m1, m2, m3) HBT outputs V1 & V2 combined on m3 T-line between m1 & m2 provides shunt inductive tuning For more info, refer to H. Park, et. al., IEEE JSSC, 2014

Amplifier Design 4:1 Series, 2-way parallel combining Baluns designed to provide inductance to cancel Cout Minimum amount of tuning elements Recall, for max tuning BW: HBT ~CCB LStub RLoad Intrinsic

Pre-amplifier Stage 2:1 Series, 2-way parallel splitting Designed so stage 1 outputs line up with inputs stage 2 Provides additional gain & eliminates need for lossy splitter

Power Amplifier IC 2:1 Input Stage 4:1 Output Stage IC Area: 0.9 mm X 1.68 mm = 1.51 mm2

Signal Path

Small Signal Bandwidth 90 GHz small signal bandwidth Broad output matching bandwidth Input matched only near 100 GHz Measured Simulated

Large Signal Bandwidth 50 GHz VDC = 2.1 V

Large Signal Bandwidth 80 GHz VDC = 2.1 V

Large Signal Bandwidth 90 GHz (Peak Performance) VDC = 2.1 V

Large Signal Bandwidth 100 GHz VDC = 2.1 V

Large Signal Bandwidth Measured Simulated PAE > 8% from 50 GHz to 100 GHz 3-dB compression of output power >15.5 dBm

Comparison Broadband / High Performance mm-Wave Power Amplifiers Technology Freq. (GHz) BW3dB (GHz) Max S21 (dB) Pout (dBm) Peak PAE (%) Topology Ref 0.25 μm InP HBT 86 23 9.4 20.37 30.4 2-way Power Combining Balun 1 0.14 μm GaN HEMT 90 35 21 24.5 13.2 4-stage Balanced Amplifier 2 65 nm Si CMOS 94 33 18 12 4.5 4-way Combining 6-stage CS 3 0.15 μm GaN HEMT 91 ~7 16 31.2 20 3-stage 4 130 nm InP HBT 15 22 14.9 2-stage 2-way power combining balun This Work H. Park, et. al. CSICS 20131, A. Margomenos, et. al. EuMIC 20122, K. Wu, et. al. Trans. THz Sci. & Tech. 20143, A. Brown, et. al. IMS 20114

Ultra-Wideband Power Amplifier Broadband power amplifier designed as LO Driver for high dynamic range mm-wave dual conversion receiver Uses low-CCB130 nm InP HBTs and sub-λ/4 baluns Peak PAE of 14.9%, Pout of 22 dBm at 90 GHz PAE > 8% and P3dB >15.5 dBm from 50-100 GHz S21 = 15 dB, 3-dB Bandwidth from 24 GHz – 114 GHz Thanks to Teledyne Scientific & Imaging for IC fabrication!

Thank you!!

Large Signal Bandwidth 55 GHz VDC = 2.145 V

Large Signal Bandwidth 60 GHz VDC = 2.145 V

Large Signal Bandwidth 65 GHz VDC = 2.145 V

Ultra-Wideband Power Amplifier Broadband Power amplifier uses 130 nm InP HBTs and sub-λ/4 baluns to achieve 50-100 GHz large sig. bandwidth Peak PAE of 14.9%, Pout of 22 dBm at 90 GHz PAE > 8% and P3dB >15.5 dBm from 50-100 GHz S21 = 15 dB, 3-dB Bandwidth from 24 GHz – 114 GHz Thanks to Teledyne Scientific & Imaging for IC fabrication!

Sub-λ/4 Baluns *     *H. Park, et. al., IEEE JSSC, 2014

Amplifier Design 4:1, 2-way power combining (4 series, 2 parallel) Zin= (25 + jX) Ω   Determine Power cell size

Amplifier Design Create Power Cell & Determine Cout   Design 2-way 4:1 output Balun such that Create symmetrical Input balun, measure port Zin DC couple baluns to PA cell (Minimum output matching) Design Input Match

TSC 130 nm InP HBTs   Max output tuning bandwidth:          

Design Strategy