A. A line contains at least two points.

Slides:



Advertisements
Similar presentations
2.5 Reasoning in Algebra and Geometry
Advertisements

Bellringer.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–5) CCSS Then/Now New Vocabulary Key Concept: Properties of Real Numbers Example 1:Justify.
TODAY IN GEOMETRY… Learning Goal 1: 2.4 You will use postulates involving points, lines, and planes Independent Practice – 20 minutes! Learning Goal 2:
Properties from Algebra
2-6 Algebraic Proof p. 136 You used postulates about points, lines, and planes to write paragraph proofs. Use algebra to write two-column proofs. Use properties.
2-5 Reasoning in Algebra and Geometry
2-5 Postulates and Paragraph Proofs (p.89)
Lesson 2-6 Algebraic Proof. 5-Minute Check on Lesson 2-5 Transparency 2-6 In the figure shown, A, C, and DH lie in plane R, and B is on AC. State the.
Algebraic proof Chapter 2 Section 6.
Over Lesson 2–5 5-Minute Check 1 In the figure shown, A, C, and lie in plane R, and B is on. Which option states the postulate that can be used to show.
Postulates and Algebraic Proofs Advanced Geometry Deductive Reasoning Lesson 2.
Vocabulary algebraic proof – Made up of algebraic statements two-column proof/formal proof – contains statements and reasons in two columns.
2.4 Algebraic Reasoning. What We Will Learn O Use algebraic properties of equality to justify steps in solving O Use distributive property to justify.
Some properties from algebra applied to geometry PropertySegmentsAngles Reflexive Symmetric Transitive PQ=QP m
Reasoning With Properties of Algebra
Lesson 2 – 6 Algebraic Proof
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–4) CCSS Then/Now New Vocabulary Postulates: Points, Lines, and Planes Key Concept: Intersections.
UNIT 01 – LESSON 11 – ALGEBRAIC PROOFS ESSENTIAL QUESTION How can algebraic properties help you solve an equation? SCHOLARS WILL… Use algebra to write.
Lesson: 15 – 4 Preparing for Two-Column Proofs
Algebraic Proof Addition:If a = b, then a + c = b + c. Subtraction:If a = b, then a - c = b - c. Multiplication: If a = b, then ca = cb. Division: If a.
Warm Up. Warm Up Answers Theorem and Proof A theorem is a statement or conjecture that has been shown to be true. A theorem is a statement or conjecture.
They are easier than Geometry ones!!. PROOFS The “GIVEN” is always written first –It is a “GIMME” The “PROVE” should be your last line Make a two column.
2.5 Reason Using Properties from Algebra Objective: To use algebraic properties in logical arguments.
Bell Ringer. Then/Now You used postulates about points, lines, and planes to write paragraph proofs. Use algebra to write two-column proofs. Use properties.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–5) CCSS Then/Now New Vocabulary Key Concept: Properties of Real Numbers Example 1:Justify.
2.5 Reasoning in Algebra and Geometry Algebraic properties of equality are used in Geometry. –Will help you solve problems and justify each step. In Geometry,
Intro to Proofs Unit IC Day 2. Do now Solve for x 5x – 18 = 3x + 2.
Algebraic Proof LESSON 2–6. Lesson Menu Five-Minute Check (over Lesson 2–5) TEKS Then/Now New Vocabulary Key Concept: Properties of Real Numbers Example.
2.5 Reasoning and Algebra. Addition Property If A = B then A + C = B + C.
USING PROPERTIES FROM ALGEBRA ALGEBRAIC PROPERTIES OF EQUALITY Let a, b, and c be real numbers. SUBTRACTION PROPERTY ADDITION PROPERTY If a = b, then a.
Section 2.2 Day 1. A) Algebraic Properties of Equality Let a, b, and c be real numbers: 1) Addition Property – If a = b, then a + c = b + c Use them 2)
Reasoning in Algebra & Deductive Reasoning (Review) Chapter 2 Section 5.
Concept. Example 1 Identifying Postulates ARCHITECTURE Explain how the picture illustrates that the statement is true. Then state the postulate that.
Algebraic Proofs. 1. Transitive property of equality 2. Symmetric property of equality 3. Reflexive property of equality 4. Substitution 5. Addition property.
Chapter 2 Reasoning and Proof
Splash Screen.
Reasoning in Algebra and Geometry
Lesson 2-5: Algebraic Proofs
2.5 and 2.6 Properties of Equality and Congruence
Chapter 2.6 Algebraic Proof.
Five-Minute Check (over Lesson 2–4) Mathematical Practices Then/Now
Five-Minute Check (over Lesson 2–3) Mathematical Practices Then/Now
Chapter 2.6 (Part 1): Prove Statements about Segments and Angles
2.5 – Reasoning Using Properties of Algebra
2.4 Algebraic Reasoning.
1. SWBAT use algebra to write two column proofs
Splash Screen.
2.5 Reasoning in Algebra and Geometry
Chapter 2 Reasoning and Proof.
Starter(s): Find one counterexample to show that each conjecture is false. All vehicles on the highway have exactly four wheels. 2. All states in the United.
Use algebra to write two-column proofs.
2-6 Algebraic Proof Ms. Andrejko.
Lesson 2-5: Algebraic Proofs
Prove Statements about Segments and Angles
Reasoning With Properties of Algebra
Splash Screen.
Splash Screen.
Splash Screen.
LESSON 2–6 Algebraic Proof.
DO NOW.
Lesson 2-5: Algebraic Proofs
Properties of Equality and Proving Segment & Angle Relationships
Day 5 – Introduction to Proofs
Five-Minute Check (over Lesson 2-6) Main Ideas
2-6 Algebraic Proof Use algebra to write two-column proofs.
Homework Pg107(2,6,10,12-15,25-28,30-32,49).
Five-Minute Check (over Lesson 2–4) Mathematical Practices Then/Now
Warm Up Solve each equation. 1. 3x + 5 = r – 3.5 = 8.7
Five-Minute Check (over Lesson 2–3) Mathematical Practices Then/Now
Presentation transcript:

A. A line contains at least two points. In the figure shown, A, C, and lie in plane R, and B is on . Which option states the postulate that can be used to show that A, B, and C are collinear? A. A line contains at least two points. B. A line contains only two points. C. A line contains at least three points. D. A line contains only three points. 5-Minute Check 1

In the figure shown, A, C, and lie in plane R, and B is on In the figure shown, A, C, and lie in plane R, and B is on . Which option states the postulate that can be used to show that lies in plane R? A. Through two points, there is exactly one line in a plane. B. Any plane contains an infinite number of lines. C. Through any two points on the same line, there is exactly one plane. D. If two points lie in a plane, then the entire line containing those points lies in that plane. 5-Minute Check 2

In the figure shown, A, C, and lie in plane R, and B is on In the figure shown, A, C, and lie in plane R, and B is on . Which option states the postulate that can be used to show that A, H, and D are coplanar? A. Through any two points on the same line, there is exactly one plane. B. Through any three points not on the same line, there is exactly one plane. C. If two points lie in a plane, then the entire line containing those points lies in that plane. D. If two lines intersect, then their intersection lies in exactly one plane. 5-Minute Check 3

In the figure shown, A, C, and lie in plane R, and B is on In the figure shown, A, C, and lie in plane R, and B is on . Which option states the postulate that can be used to show that E and F are collinear? A. Through any two points, there is exactly one line. B. A line contains only two points. C. If two points lie in a plane, then the entire line containing those points lies in that plane. D. Through any two points, there are many lines. 5-Minute Check 4

In the figure shown, A, C, and lie in plane R, and B is on In the figure shown, A, C, and lie in plane R, and B is on . Which option states the postulate that can be used to show that intersects at point B? A. The intersection point of two lines lies on a third line, not in the same plane. B. If two lines intersect, then their intersection point lies in the same plane. C. The intersection of two lines does not lie in the same plane. D. If two lines intersect, then their intersection is exactly one point. 5-Minute Check 5

Which of the following numbers is an example of an irrational number? D. 34 5-Minute Check 6

Homework/Quiz questions?

Use algebra to write two-column proofs. You used postulates about points, lines, and planes to write paragraph proofs. Use algebra to write two-column proofs. Use properties of equality to write geometric proofs. Then/Now

algebraic proof two-column proof formal proof Vocabulary

Concept

Algebraic Steps Properties 2(5 – 3a) – 4(a + 7) = 92 Given Justify Each Step When Solving an Equation Solve 2(5 – 3a) – 4(a + 7) = 92. Algebraic Steps Properties 2(5 – 3a) – 4(a + 7) = 92 Given 10 – 6a – 4a – 28 = 92 Distributive Property –18 – 10a = 92 Combine Like Terms –18 – 10a + 18 = 92 + 18 Addition Property Example 1

–10a = 110 Simplify Division Property a = –11 Simplify Answer: a = –11 Justify Each Step When Solving an Equation –10a = 110 Simplify Division Property a = –11 Simplify Answer: a = –11 Example 1

Solve –3(a + 3) + 5(3 – a) = –50. A. a = 12 B. a = –37 C. a = –7 D. a = 7 Example 1

Begin by stating what is given and what you are to prove. Write an Algebraic Proof Begin by stating what is given and what you are to prove. Example 2

2. Subtraction Prop. of Equality Write an Algebraic Proof Statements Reasons Proof: 1. Given 1. d = 20t + 5 2. d – 5 = 20t 2. Subtraction Prop. of Equality 3. 3. Division Property of Equality = t 4. 4. Symmetric Prop. of Equality Example 2

Which of the following statements would complete the proof of this conjecture? If the formula for the area of a trapezoid is , then the height h of the trapezoid is given by . Example 2

3. Division Property of Equality Statements Reasons Proof: 3. 3. Division Property of Equality 4. 4. Symmetric Property of Equality 1. Given 1. 2. _____________ 2. Multiplication Prop of Equality ? Example 2

A. 2A = (b1 + b2)h B. C. D. Example 2

Write a Geometric Proof If A B, mB = 2mC, and mC = 45, then mA = 90. Write a two-column proof to verify this conjecture. Example 3

3. Transitive Property of Equality 3. mA = 2mC Write a Geometric Proof Statements Reasons Proof: 1. Given 1. A B; mB = 2mC; mC = 45 2. mA = mB 2. Definition of angles 3. Transitive Property of Equality 3. mA = 2mC 4. Substitution 4. mA = 2(45) 5. mA = 90 5. Arithmetic / Simplification Example 3

Example 3

3. Definition of congruent segments Statements Reasons Proof: 1. Given 1. 2. 2. _______________ ? 3. AB = RS 3. Definition of congruent segments 4. AB = 12 4. Given 5. RS = 12 5. Substitution Example 3

A. Reflexive Property of Equality B. Symmetric Property of Equality C. Transitive Property of Equality D. Substitution Property of Equality Example 3

Homework Pg 139 (#1-7, 10-20 even)