Upgrade of the scintillator testing station in Prague

Slides:



Advertisements
Similar presentations
Scintillators testing at Prague
Advertisements

Micromegas studies using cosmic rays Franck Sabatié May 7th 2009 Saclay cosmic ray bench Data acquisition system and analysis tools MIP detection Position.
1 TOF Aging Issues Pre-history Operating history Observations related to gain loss Impact on timing resolution Possible courses of action April 6, 2006.
Status of MRPC-TOF Wang Yi Department of Engineering Physics Tsinghua University, Beijing, China 1.
M. Palm, CERN1 Performance test of ACEM-detector (Aluminum Cathode Electron Multiplier) Marcus Palm AB-ATB-EA.
Investigation of the properties of diamond radiation detectors
Tests of a 10cm by 10cm triple GEM detector
Scintillation Detectors
Trend ground array 1 1.General considerations 2.Study on the prototype detector 3.Inclined ground array simulation 4.Making work plan in 2014.
PEPPo Weekly Meeting February 23, 2011 PEPPo Electromagnetic Calorimeter First measurements Jean-Sébastien Réal, Eric Voutier Laboratoire de Physique Subatomique.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Status of PNPI R&D for choice of the MUCH tracking base detector (this work is supported by INTAS) ■ Introduction ■ MICROMEGAS ■ GEM ■ MICROMEGAS+GEM ■
Evaluation of Silicon Photomultiplier Arrays for the GlueX Barrel Calorimeter Carl Zorn Radiation Detector & Medical Imaging Group Jefferson Laboratory,
A scintillation detector for neutrons below 1 MeV with gamma-ray rejection Scintillators are 3 mm BC408, 10 layers total Adjacent layers are optically.
Uni Bergen:G. Eigen, J. Zalieckas, E. van der Kraaij FZU Prague: J. Cvach, J. Kvasnicka, I. Polák CALICE meeting, Argonne, 19/03/2014.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
CM26 March 2010Slide 1 EMR Status o Intro o Construction o Magnetic shielding o Electronics o Prototype Cosmics test o Schedule Jean-Sebastien Graulich,
COMPTON POLARIMETRY Collected data Cavity power Status on counting methods Systematic errors and hardware issues.
FLC Group Test-beam Studies of the Laser-Wire Detector 13 September 2006 Maximilian Micheler Supervisor: Freddy Poirier.
1. DESY tests 2. Electronics developments 3. Optical developments 4. Outlook Casablanca J. Cvach, CALICE Coll. meeting.
Neutron Monitoring Detector in KIMS Jungwon Kwak Seoul National University 2003 October 25 th KPS meeting.
“End station A setup” data analysis Josef Uher. Outline Introduction to setup and analysis Quartz bar start counter MA and MCP PMT in the prototype.
Uni Bergen:G. Eigen, E. van der Kraaij, J. Zalieckas FZU Prague: J. Cvach, J. Kvasnička, I. Polák Linear Collider Workshop, Tokyo 13/11/2013.
Start Counter Collaboration Meeting September 2004 W. Boeglin FIU.
Luminosity Monitor UKNF Meeting 7 June 2010 Paul Soler, David Forrest Danielle MacLennan.
1 Report on analysis of PoGO Beam Test at Spring-8 Tsunefumi Mizuno July 15, 2003 July 21, 2003 revised August 1, 2003 updated.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
V. Vorobel, SuperNEMO meeting, Aussois Vacuum system upgrade Vacuum probe installed Spectrometer sealed – vacuum improved from 300 Pa to 7 Pa.
Neutron detection in LHe ( HMI run 2004) R.Golub, E. Korobkina, J. Zou M. Hayden, G. Archibold J. Boissevain, W.S.Wilburn C. Gould.
Shashlyk FE-DAQ requirements Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA FE-DAQ workshop, Bodenmais April 2009.
Systematic Studies of Small Scintillators for New Sampling Calorimeter E.P.Jacosalem, S.Iba, N.Nakajima, H.Ono, A.L.Sanchez, A.M.Bacala & H.Miyata GLD.
TELL1 high rate Birmingham Karim Massri University of Birmingham CEDAR WG Meeting – CERN – 26/03/2012.
Experimental Nuclear Physics Some Recent Activities 1.Development of a detector for low-energy neutrons a. Hardware -- A Novel Design Idea b. Measure the.
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
Status of the ETL 9125FLB Photomultiplier Tubes Steve Bache UNC-Wilmington.
Progress on the beam tracking instrumentation Position measurement device Tests performed and their resolution Decision on electronics Summary.
E.Guschin (INR,Moscow) 3 May 2006Calorimeter commissioning meeting Status of PRS/SPD detector Cosmic test results Installation/tuning of monitoring system.
A. Zelenski a, G. Atoian a *, A. Bogdanov b, D.Raparia a, M.Runtso b, D. Steski a, V. Zajic a a Brookhaven National Laboratory, Upton, NY, 11973, USA b.
Gain stability and the LYSO beam radiation monitor measurements
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
Slide 1Turisini M. Frontend Electronics M.Turisini, E. Cisbani, P. Musico CLAS12 RICH Technical Review, 2013 June Requirements 2.Description of.
A Prototype Diamond Detector for the Compton Polarimeter in Jefferson lab, Hall C Medium Energy Physics Group Amrendra.
An electron/positron energy monitor based on synchrotron radiation. I.Meshkov, T. Mamedov, E. Syresin, An electron/positron energy monitor based on synchrotron.
CALO Meeting–September 2 nd 2015 Calorimeter Upgrade Electronics: June 2015 Test Beam E. Picatoste Universitat de Barcelona, Institut de Ciències del Cosmos.
NUMI NUMI/MINOS Status J. Musser for the MINOS Collatoration 2002 FNAL Users Meeting.
1 Chapter No. 17 Radiation Detection and Measurements, Glenn T. Knoll, Third edition (2000), John Willey. Measurement of Timing Properties.
E Ethernet C CAN bus P Profibus HV HV cables LV LV cables (+busbar) S Serial (RS232) Signal cable Other/Unknown Liquid or Gas Cable and/or Bus PCI-XYZ.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
1 Report on analysis of PoGO Beam Test at Spring-8 Tsunefumi Mizuno July 15, 2003 July 21, 2003 revised.
R&D on Hadron Blind detector, recent results Issues addressed: - gain limits in CF 4 with heavily ionizing particles - operation.
TOF Update GlueX Collaboration Meeting Jefferson Lab May 12, 2009 Paul Eugenio & Alexander Ostrovidov Florida State University.
Scintillator testing in Prague (update from Aussois)
MDT second coordinate readout: status and perspectives
J. Musser for the MINOS Collatoration 2002 FNAL Users Meeting
Radiation hardness tests of GaAs and Si sensors at JINR S. M
Characterization of scintillation blocks at Prague
Present Read Out Chain for the PANDA Barrel DIRC
SHiP straw tracker prototype tests
Kröhnke, 14 November 2012 FCAL Collaboration Meeting Sergej Schuwalow
Luminosity Monitor Status
Prototype activities update
Damping Ring Kicker Tests at AØ
Conceptual design of TOF and beam test results
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
Performance test of ACEM-detector (Aluminum Cathode Electron Multiplier) Marcus Palm AB-ATB-EA M. Palm, CERN.
Testbeam analysis on module #1
Pre-installation Tests of the LHCb Muon Chambers
LSO: Energy resolution
MEG II実験 液体キセノン検出器の建設状況
Gain measurements of Chromium GEM foils
Presentation transcript:

Upgrade of the scintillator testing station in Prague Testing station upgrade – vacuum, electronics, magnetic shielding Magnetic aspects of the measurement Electronics optimization Observed spectra – 207Bi, 137Cs, spectrometer electron beam 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Vacuum system upgrade Vacuum probe installed. Spectrometer sealed – vacuum improved from 300 Pa to 7 Pa. We have to change a hoose for further improvement. Efect of sealing on spectra is significant. 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Electronics upgrade PC controlled disriminator CAEN installed in VME – simplification of electronics, well defined and stable threshold, no possible interference between crates Independent HV sources for different PMTs – to equilibrate differences in gains. We are waiting for delivery of VME PC controlled HV modules. Cables fixation to prevent their braking on PCB. Waiting for new PC controled HV modules and repaired VME doesn‘t prevent measurement. 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

Magnetic shielding upgrade Four m-metal cylinders internal f133mm,length 305mm, thickness 1mm for PMT shielding instead of the steel cylinders which were used up to now. Plan to make a m-metal box (thickness 1mm) to cover the spectrometer completly. 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

Magnetic shielding measurement Magnetic sensor placed instead of PMT in measurement possition #1. B-field measured in 3 directions in 3 shielding configurations (no shield, steel, m-metal) for currents in the coil corresponding to the electron beam energies 0-1600keV, saturation. 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

Peak position and magnetic history Our procedure to set a certain electron beam energy: First increase the current in the coil to reach a magnetic saturation of the youk Then decrease the current to the value corresponding to the desired energy. Does the electron beam energy depend on the previously set energy due to the magnetic hysteresis? 1) If we keep the rule – first go up to magnetic saturation then go down to the desired energy 2) If we keep the rule – don‘t keep 1) if the desired energy < the original energy We don‘t observe a systematic > 1% Measured with steel shielding cylinder. 1% down 0.6% down 0.3% down 0.3% down 0.2% down Sat. 1600 1300 1000 700 300 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois Magnetic history notes

Peak position and width vs. measurement position number Does the peak position depend on the location (measurement position) of the assembly in the Black-Box due to magnetic field variations? Measured in the position #1, #2, #3, #4 and then again in #1. 1 again 1 again 1 again 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

Electronics settings optimization The optimized parameters: HV applied to the “main” PMT for the tested scintillator HV for the DE detector PMTs – we are using 2 PMTs Trigger signal length DE PMTs threshold 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

Main PMT HV optimization HV > 1400 V causes signal amplitude exceeding digitizer range. We continue to use 1300 V. Higher HV could be tried with use of an attenuator. 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

Trigger signal lenght scan We continue to use 20 ns. 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

DE-detector HV and thresholds optimization What is the best criterion? Peak/pedestal ratio Resolution Resolution error 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

Measurement conditions Threshold scans were performed for 3 different DE HV under such conditions: DE HV 1050 V E=1600 keV Vacuum 44 Pa DE HV 1100 V E=1000 keV Vacuum 6.5 Pa DE HV 1200 V E=1000 keV Vacuum 7.0 Pa Peak/pedestal ratio – DE threshold scan 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

Resolution – DE threshold scan Resolution error – DE threshold scan 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

Resolution – DE threshold scan 1D The higher is threshold the better is the ratio peak/pedestal But the measurement accuracy is worse wit higher threshold because of the statistics decrease. Peak width is not changing with the threshold. 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

Peak position – DE threshold scan Possible explanation: Higher threshold prefers the electrons which lose more energy in DE then less energy remains for the block. 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

Typical signal conditions DE left scint. block DE right Counts per 10 s deltaE left deltaE right Scint block coincidence 1439 2096 - 324 1401 405 311 2085 416 335 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Observed spectra 137Cs Pedestal = 50% of entries PMT HV 1300 V DE HV 1200 V DE threshold 10 mV Vacuum 7 Pa 207Bi Pedestal = 20-30% of entries Electron beam 1 MeV Pedestal = 2% of entries 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Summary Better achieved vacuum 7 Pa gives cleaner electron spectrum. We hope to improve the vacuum more. New PC controlled discriminator – stable, repeatable measurements. New HV modules and repaired VME crate will come soon. Not confirmed influence of magnetic field to measurements. In addition the steel mag shielding cylinders are changed to m-metal. Plan to cover the spectrometer to m-metal box. The expected upgrades don’t postpone possible measurements. The station is ready to continue scintillators characterization. 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Backup 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Observed spectra 137Cs Pedestal = 50% of entries PMT HV 1300 V DE HV 1200 V DE threshold 10 mV Vacuum 7 Pa 207Bi Pedestal = 25% of entries Spectrometer electron beam Pedestal = 2% of entries 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

Magnetic shielding measurement 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Electronics view 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Testing station setup 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Oscilloscope snap 1 DE left scint. block DE right 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Oscilloscope snap 2 DE left scint. block DE right 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Oscilloscope snap 3 DE left scint. block DE right 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Oscilloscope snap 4 DE left scint. block DE right 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Oscilloscope snap 5 DE left scint. block DE right 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Oscilloscope snap 6 DE left scint. block DE right 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Oscilloscope snap 7 DE left scint. block DE right 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Oscilloscope snap 8 DE left scint. block DE right 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Oscilloscope snap 9 DE left scint. block DE right 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Oscilloscope snap 10 DE left scint. block DE right 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Oscilloscope snap 11 DE left scint. block DE right 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois

V. Vorobel, SuperNEMO meeting, Aussois Oscilloscope snap 12 DE left scint. block DE right 15.1.2014 V. Vorobel, SuperNEMO meeting, Aussois