HARD X-RAY/SOFT g-RAY OBSERVATIONS OF THE GALACTIC DIFFUSE EMISSION WITH INTEGRAL/SPI SPI SPECTROMETER (20 keV – 8 MeV, foV 30°) ONBOARD INTEGRAL OBSERVATORY.

Slides:



Advertisements
Similar presentations
Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
Advertisements

The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Estimated SOFT X-ray Spectrum and Ionization of Molecular Hydrogen in the Central Molecular Zone of the Galactic Center Masahiro Notani and Takeshi Oka.
Upper Limit on the Cosmological  - Ray Background Yoshiyuki Inoue (Stanford) Kunihito Ioka (KEK) 1.
Observations of the isotropic diffuse gamma-ray emission with the Fermi Large Area Telescope Markus Ackermann SLAC National Accelerator Laboratory on behalf.
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
Eiichiro Komatsu University of Texas at Austin A&M, May 18, 2007
Annihilating Dark Matter Nicole Bell The University of Melbourne with John Beacom (Ohio State) Gianfranco Bertone (Paris, Inst. Astrophys.) and Gregory.
Swift/BAT Hard X-ray Survey Preliminary results in Markwardt et al ' energy coded color.
Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University.
Challenges in Revealing Dark Matter from the High Energy Gamma-Ray Background (Continuum) Ranga-Ram Chary Spitzer Science Center, Caltech
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.
The all-sky distribution of 511 keV electron-positron annihilation emission Kn ö dlseder, J., Jean, P., Lonjou, V., et al. 2005, A&A, 441, 513.
Igor V. Moskalenko (Stanford) with S. Digel (SLAC) T. Porter (UCSC) O. Reimer (Stanford) O. Reimer (Stanford) A. W. Strong (MPE) A. W. Strong (MPE) Diffuse.
CMB constraints on WIMP annihilation: energy absorption during recombination Tracy Slatyer – Harvard University TeV Particle Astrophysics SLAC, 14 July.
Simulating the Gamma Ray Sky Andrew McLeod SASS August 12, 2009.
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
Gamma-ray From Annihilation of Dark Matter Particles Eiichiro Komatsu University of Texas at Austin AMS April 23, 2007 Eiichiro Komatsu University.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Igor V. Moskalenko (Stanford U.) with A.Strong (MPE), S.Digel (SLAC), T.Porter (USCS), O.Reimer (SU) Modeling of the Galactic diffuse continuum γ-ray emission.
The TeV view of the Galactic Centre R. Terrier APC.
The Brightest point X-ray sources in elliptical galaxies and the mass spectrum of accreting black holes N. Ivanova, V. Kalogera astro-ph/
Background treatment in spectral analysis of low surface brightness sources Alberto Leccardi & Silvano Molendi Garching, 2 nd May 2006 EPIC background.
Interaction of Cosmic-Rays with the Solar System Bodies as seen by Fermi LAT Monica Brigida Bari University For the Fermi LAT Collaboration.
Figure 5. The LAT and the GLAST spacecraft. GLAST will also carry a gamma-ray burst monitor, the GBM instrument. For more information about GLAST, see.
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
Analysis methods for Milky Way dark matter halo detection Aaron Sander 1, Larry Wai 2, Brian Winer 1, Richard Hughes 1, and Igor Moskalenko 2 1 Department.
Prof. Steven Boggs UCB Space Sciences Laboratory SPI Instrument Team Activities Prof. Steven Boggs (PI) Dr. Cornelia Wunderer (SPI CoI) Dr. Emrah Kalemci.
Characterizing cosmic ray propagation in massive star forming regions: the case of 30 Dor and LMC E. J. Murphy et al. Arxiv:
MARCH 11YPM 2015  ray from Galactic Center Tanmoy Mondal SRF PRL Dark Matter ?
Diffuse Emission and Unidentified Sources
Antimatter in our Galaxy unveiled by INTEGRAL
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
RGS observations of cool gas in cluster cores Jeremy Sanders Institute of Astronomy University of Cambridge A.C. Fabian, J. Peterson, S.W. Allen, R.G.
Observations of Near Infrared Extragalactic Background (NIREBL) ISAS/JAXAT. Matsumoto Dec.2-5, 2003 Japan/Italy seminar at Niigata Univ.
The 7-year view of the accreting X-ray binaries with INTEGRAL R.Krivonos, M.Revnivtsev, S.Tsygankov, E.Churazov, R.Sunyaev MPA Garching, Germany; IKI,
Multi-wavelength signals of dark matter annihilations in the Galactic diffuse emission (based on MR and P. Ullio, arXiv: )‏ Marco Regis University.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Experimentelle Kernphysik
論文紹介 _2010-Jan.ppt Tsunefumi Mizuno 1 Fermi 衛星でみた拡散ガンマ線放射と銀河宇宙線 Tsunefumi Mizuno Hiroshima Univ. June 15, 2009 "Fermi Large Area Telescope Measurements.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
Radiation fields in the Milky Way and their role in High-Energy Astrophysics Richard Tuffs, Ruizhi Yang, & Felix Aharonian (MPI-Kernphysik Heidelberg)
Proposed Laboratory Simulation of Galactic Positron In-Flight Annihilation in Atomic Hydrogen Benjamin Brown, Marquette University, Milwaukee, WI, USA.
On the Galactic Center being the main source of Galactic Cosmic Rays as evidenced by recent cosmic ray and gamma ray observations Yiqing Guo, Zhaoyang.
Interstellar gamma-rays: first large-scale results from Fermi-LAT Andy Strong on behalf of Fermi-LAT collaboration ICRC Lodz 7-15 July 2009 OG2.1 ID 0390.
Topics on Dark Matter Annihilation
CR Backgrounds for DM Searches
Diffuse Galactic Emission
On behalf of the ARGO-YBJ collaboration
The X-ray Universe 2008 Granada, 29 May 2008
Mathew A. Malkan (UCLA) and Sean T. Scully (JMU)
Observation of Pulsars and Plerions with MAGIC
Dark Matter in Galactic Gamma Rays
with Xiang-Yu Wang, Ruo-Yu Liu, Fang-Kun Peng and P.H.T. Tam
Electron Observations from ATIC and HESS
Can dark matter annihilation account for the cosmic e+- excesses?
Determining the Spectrum of Cosmic Rays
Optimizing Galaxy Simulations using FGST Observations
Songzhan Chen Institute of High Energy Physics (IHEP) Nanjing
Status and issues for the LAT interstellar emission model
The “Milky Way”.
High Energy emission from the Galactic Center
Particle Acceleration in the Universe
Isotopic abundances of CR sources
Galactic Diffuse Emission for DC2
Eiichiro Komatsu University of Texas at Austin A&M, May 18, 2007
on behalf of the Fermi-LAT Collaboration
Diffuse Gamma-Rays seen by Fermi Gamma-ray Space Telescope
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

HARD X-RAY/SOFT g-RAY OBSERVATIONS OF THE GALACTIC DIFFUSE EMISSION WITH INTEGRAL/SPI SPI SPECTROMETER (20 keV – 8 MeV, foV 30°) ONBOARD INTEGRAL OBSERVATORY  6 years of data (2003-2009) ~ 1.1×108 s livetime, ~ 40000 exposures of ~2800 s Disentangle : background, point sources emission (variable) and “diffuse” emission ► Diffuse continuum emission spectrum and spatial morphology ► Comparison with GALPROP modeling L. Bouchet, E. Jourdain, J.-P. Roques Université de Toulouse, UPS-OMP, IRAP, Toulouse, France A. W. Strong Max-Planck-Institut für extraterrestrische Physik, Garching, Germany T. A. Porter, I. V. Moskalenko Hansen Experimental Physics Laboratory, Stanford University, USA 32nd ICRC, August 11-18, 2011, Beijing, China blalammmmmm

HARD X-RAY/SOFT g-RAY DIFFUSE EMISSION  Point sources dominate the Milky Way (20-200 keV) emission, “diffuse” interstellar emission is weaker than previously reported (Lebrun et al., 2004) The annihilation radiation dominates above 300 keV and reaches a maximum at 511 keV 6 YEARS OF OBSERVATIONS : 270 sources in the 25-50 keV, 129 in the 50-100 keV, 68 above 100 keV CENTRAL RADIAN (|l| < 30°, |b|<15°) Sources Diffuse Bouchet et al., 2011, ApJ

GALAXY (|l| < 30°, |b|<15°) SPECTRUM DIFFUSE EMISSION Positron Astronomy 511 e+e- keV line & positronium continuum Morphology (Weidenspointner et al., 08, Bouchet et al., 10, Churazov et al., 10) Bulge : 3° + 12° FWHM Gaussians F511 ~10-3 ph.cm-2.s-1 Positronium fraction f ~ 100% Disk : ~1.7 - 3.9 x 10-3 ph.cm-2.s-1 Spectroscopy (Churazov et al., 04 & 10, Jean et al., 06) GALAXY (|l| < 30°, |b|<15°) SPECTRUM Galactic radioactivity (Diehl et al., 04, Harris et al., 07, Wang et al., 07,09) Inner Galaxy 60Fe : Fmean~ 0.6 x10-4 ph.cm-2.s-1 26AL : F~3.4x10-4 ph.cm-2.s-1 60Fe/26Al ~18 % CVs population (E < 100 keV) “Unresolved” sources population which contains mainly CV’s and coronally active stars (Krivonos et al., 07) Diffuse continuum : mainly interstellar particle interaction Power law a ~ 1.5

DIFFUSE X-RAY/SOFT g-RAYS FROM INNER GALAXY GALPROP code e.g. “cosmic-ray propagation code” (Strong, Moskalenko & Reimer, 2004, ApJ) (e.g. Strong (2010), arXiv:1101.1381) e.g. Ackermann et al. (2010), Phys. Rev. D 82 + SPI (diffuse) + COMPTEL (diffuse) | FERMI Total diffuse components : P0 Bremsstrahlung Inverse Compton on interstellar radiation field (optical, IR and CMB) from primary electrons, secondary e+/e- Fermi range Fermi sources Isotropic/Extragalactic

DIFFUSE HARD X-RAY/g-RAY EMISSION SPATIAL DISTRIBUTION 2D Fit |l| < 180°, |b| < 90°  IC - GALPROP = interstellar particle interaction  NIR A(4.9m) IR map (interstellar extinction effects removed) = stellar emission  Dashed: Positron annihilation (bulge) Sum:  +  +  Sum (E < 50 keV) :  + NIR I(4.9m) map +  GALPROP IC map: Primary electron x 2 MORE CONSISTENT with SPI

INCREASING THE HARD X-RAY/SOFT g-RAY DIFFUSE CONTINUUM EMISSION |l| < 30° and |b| < 15° + COMPTEL + SPI Low energy “unresolved” sources population Annihilation radiation spectrum Blue shaded area : uncertainties on spectral modelling GALPROP Inverse Compton models (dashed lines) - Primary electron spectrum based on Fermi - Primary electron spectrum increased by a factor 2 Or - Increased halo height from 4 kpc to 10 kpc - Increased ISRF in the Galactic bulge (x 10) - Increased halo height from 4 kpc to 10 kpc and ISRF in the bulge (x 10) } More SPI emission

ELECTRON LOW-ENERGY SPECTRUM AND SPI DATA |l| < 30° and |b| < 15° + COMPTEL + SPI Primary electron spectrum :  measured with Fermi  cutoff below 5 GeV  cutoff below 1 GeV  Shows that SPI gamma-rays are sensitive to electrons below 1 GeV probes range which other methods cannot

SUMMARY  20 keV- 2.5 MeV DIFFUSE EMISSION, SPECTRUM AND SPATIAL MORPHOLOGY ►SPI data confirm COMPTEL measurements around the MeV  GALPROP DIFFUSE EMISSION MODELING ►SPI : PROBE of cosmic-rays electrons and positrons ►SPI gamma-rays are sensitive to electrons below 1 GeV INTEGRAL/SPI CONSTRAINTS - Electron spectrum - Halo height - Interstellar radiation field in bulge Upper limits on “Fermi bubbles”  PERSPECTIVES ►INTEGRAL mission extension to 2014 would give 12 years of data Future improvements in data reduction techniques and models ►SPI + FERMI constraints added to those from radio to g-ray (20 decades in energy) Use all types of data in a self-consistent way to test models of cosmic propagation

FOREGROUND EXTINCTION IR MAP The map of the Galaxy in the near infrared spectral band was obtained using data of COBE/DIRBE observations (zodi-subtracted mission average map provided by the LAMBDA archive of the Goddard Space Flight Center, http://lambda.gsfc.nasa.gov). To reduce the influence of the interstellar reddening we considered DIRBE spectral band 4.9m. We applied first-order corrections to the NIR map of the Galaxy obtained by COBE/DIRBE. We assumed that the intrinsic NIR color temperature (i.e., the ratio of intrinsic surface brightnesses I1.2m and I4.9m) of the Galactic disk and the Galactic bulge/bar is uniform and its true value can be derived at high Galactic latitudes where the interstellar reddening is negligible. Then the foreground extinction map may be expressed as:                                                                                                           Here the A values are the reddening coefficients at different wavelengths. We have used the interstellar reddening values from works of Lutz et al. (1996) and Indebetouw et al. (2005). The employed correction of course removed only main effects of interstellar extinction on the COBE/DIRBE map, therefore we do not expect that the obtained COBE/DIRBE map and profiles have accuracy higher than ~10%  .

Diffuse X-rays/g-rays from inner Galaxy GALPROP code e.g. “cosmic-ray propagation code” e.g. Ackermann et al. (2010), Phys. Rev. D 82 (e.g. Strong (2010), arXiv:1101.1381) + SPI (diffuse) + COMPTEL (diffuse) | FERMI Energy E-2.3 E-1.6 J(E) GALPROP injected electrons Break ~few GeV Total diffuse = P0 + Bremsstrahlung + Inverse Compton on interstellar radiation field (optical, IR and CMB) from primary electrons, secondary electrons + positrons. Magenta : Fermi sources – Black : Isotropic/Extragalactic