Lower Limits To Specific Contact Resistivity

Slides:



Advertisements
Similar presentations
by Alexander Glavtchev
Advertisements

Contact Modeling and Analysis of InAs HEMT Seung Hyun Park, Mehdi Salmani-Jelodar, Hong-Hyun Park, Sebastian Steiger, Michael Povoltsky, Tillmann Kubis,
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Device Research Conference 2011
Advanced Semiconductor Physics ~ Dr. Jena University of Notre Dame Department of Electrical Engineering SIZE DEPENDENT TRANSPORT IN DOPED NANOWIRES Qin.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
1 Interface roughness scattering in ultra-thin GaN channels in N-polar enhancement-mode GaN MISFETs Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh.
Semiconductor Devices 27
Computational Solid State Physics 計算物性学特論 5回
Tunneling Outline - Review: Barrier Reflection - Barrier Penetration (Tunneling) - Flash Memory.
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
Nanometer InP Electron Devices for VLSI and THz Applications
Limitations of Digital Computation William Trapanese Richard Wong.
ENE 311 Lecture 9.
Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic Mark Rodwell, Doron Elias University of California, Santa Barbara 3rd Berkeley Symposium on.
2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana
Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 30 Metal-Semiconductor Contacts Real semiconductor devices and ICs always contain.
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
Scaling of the performance of carbon nanotube transistors 1 Institute of Applied Physics, University of Hamburg, Germany 2 Novel Device Group, Intel Corporation,
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
InAs Inserted HEMT 연성진.
Special Issues on Nanodevices1 Special Topics in Nanodevices 3 rd Lecture: Nanowire MOSFETs Byung-Gook Park.
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
2009 Electronic Materials Conference Ashish Baraskar June 24-26, 2009 – University Park, PA 1 High Doping Effects on In-situ and Ex-situ Ohmic Contacts.
Technology Development for InGaAs/InP-channel MOSFETs
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
1 Materials Beyond Silicon Materials Beyond Silicon By Uma Aghoram.
III-V CMOS: Device Design & Process Flows , fax ESSDERC Workshop on Germanium and III-V MOS Technology, Sept.
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
C. Kadow, J.-U. Bae, M. Dahlstrom, M. Rodwell, A. C. Gossard *University of California, Santa Barbara G. Nagy, J. Bergman, B. Brar, G. Sullivan Rockwell.
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
President UniversityErwin SitompulSDP 11/1 Lecture 11 Semiconductor Device Physics Dr.-Ing. Erwin Sitompul President University
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
QUANTUM-EFFECT DEVICES (QED)
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
20th IPRM, MAY 2008, Versallies-France
Chapter 14. MS Contacts and Practical Contact Considerations
Device Research Conference, June 19, 2012
by Alexander Glavtchev
Contact Resistance Modeling in HEMT Devices
High Transconductance Surface Channel In0. 53Ga0
MIT Virtual Source Model
A p-n junction is not a device
Neerav Kharche Advisors: Prof. Gerhard Klimeck Prof. Timothy Boykin
Nanowire Gate-All-Around (GAA) FETs
Lecture 7 OUTLINE Poisson’s equation Work function
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
MOS Capacitor Basics Metal SiO2
Ultra Low Resistance Ohmic Contacts to InGaAs/InP
EE130/230A Discussion 5 Peng Zheng.
Mechanical Stress Effect on Gate Tunneling Leakage of Ge MOS Capacitor
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Lecture 7 OUTLINE Work Function Metal-Semiconductor Contacts
C. Kadow1, H.-K. Lin1, M. Dahlstrom1, M. Rodwell1,
Beyond Si MOSFETs Part 1.
Presentation transcript:

Lower Limits To Specific Contact Resistivity Ashish Baraskar1, Arthur C. Gossard2,3, Mark J. W. Rodwell3 1GLOBALFOUNDRIES, Yorktown Heights, NY Depts. of 2Materials and 3ECE, University of California, Santa Barbara, CA 24th International Conference on Indium Phosphide and Related Materials Santa Barbara, CA

Ohmic Contacts: Critical for nm & THz Devices Scaling laws to double bandwidth FET parameter change gate length decrease 2:1 current density (mA/mm), gm (mS/mm) increase 2:1 transport effective mass constant channel 2DEG electron density gate-channel capacitance density dielectric equivalent thickness channel thickness channel density of states source & drain contact resistivities decrease 4:1 > 0.5 Ω-µm2 resistivity for 10 nm III-V MOSFET Ls/d Lg Intel 32 nm HKMG IEDM 2009 HBT parameter change emitter & collector junction widths decrease 4:1 current density (mA/mm2) increase 4:1 current density (mA/mm) constant collector depletion thickness decrease 2:1 base thickness decrease 1.4:1 emitter & base contact resistivities > 2 Ω-µm2 resistivity for 2 THz fmax THz HBT: Lobisser ISCS 2012

Ohmic Contacts: Critical for nm & THz Devices Scaling laws to double bandwidth FET parameter change gate length decrease 2:1 current density (mA/mm), gm (mS/mm) increase 2:1 transport effective mass constant channel 2DEG electron density gate-channel capacitance density dielectric equivalent thickness channel thickness channel density of states source & drain contact resistivities decrease 4:1 > 0.5 Ω-µm2 resistivity for 10 nm III-V MOSFET Ls/d Lg Intel 32 nm HKMG IEDM 2009 HBT parameter change emitter & collector junction widths decrease 4:1 current density (mA/mm2) increase 4:1 current density (mA/mm) constant collector depletion thickness decrease 2:1 base thickness decrease 1.4:1 emitter & base contact resistivities > 2 Ω-µm2 resistivity for 2 THz fmax THz HBT: Lobisser ISCS 2012

Ultra Low-Resistivity Refractory Contacts Schottky Barrier is about one lattice constant what is setting contact resistivity ? what resistivity should we expect ?

Landauer (State-Density Limited) Contact Resistivity momentum velocity density current conductivity G valley L, X, D valleys

Landauer (State-Density Limited) Contact Resistivity momentum velocity density current conductivity G valley L, X, D valleys

About this work Scope Analytical calculation of minimum feasible contact resistivities to n-type and p-type InAs and In0.53Ga0.47As. Assumptions Conservation of transverse momentum and total energy across the interface Metal E-k relationship treated as a single parabolic band Band gap narrowing due to heavy doping neglected for the semiconductor

Potential Energy Profile Schottky barrier modified by image forces Modeled potential barrier: piecewise linear approximation introduced to facilitate use of Airy functions for calculating transmission probability

Calculation of Contact Resistivity Current density, J z : transport direction ksx, ksy ksz : wave vectors in the semiconductor vsz : electron group velocity in z direction T : interface transmission probability fs and fm : Fermi functions in the semiconductor and the metal Contact Resistivity, ρc

Results: Zero Barrier Contacts, Landauer Contacts Step potential energy profile Step Potential Barrier: interface quantum reflectivity, resistivity >Landauer Parabolic vs. non-parabolic bands: differing Efs-Ecs → differing interface reflectivity Landauer resistivity lower in Si than in Γ-valley semiconductorfs multiple minima, anisotropic bands

Results: InGaAs Assumes parabolic bands At n = 5×1019 cm-3 doping, ΦB=0.2 eV measured resistivity 2.3:1 higher than theory Theory is 3.9:1 higher than Landauer In-situ contacts References: Jain et. al., IPRM, 2009 Baraskar et al., JVST B, 2009 Yeh et al., JJAP, 1996 Stareev et al., JAP, 1993

Results: N-InAs n-InAs Assumes parabolic bands At n = 1020 cm-3 doping, ΦB=0.0 eV measured resistivity 1.9:1 higher than theory Theory is 3.6:1 higher than Landauer In-situ contacts References: Baraskar et al., IPRM, 2010 Stareev et al., JAP, 1993 Shiraishi et al., JAP, 1994 Singisetti et al., APL, 2008 Lee et al., SSE, 1998

Results: P-InGaAs p-In0.53Ga0.47As Assumes parabolic bands Theory and experiment agree well. At n = 2.2×1020 cm-3 doping, ΦB=0.6 eV theory is 13:1 higher than Landauer → Tunneling probability remains low. In-situ contacts References: Chor et al., JAP, 2000 Baraskar et al., ICMBE, 2010 Stareev et al., JAP, 1993 Katz et al., APL, 1993 Jain et al., DRC, 2010 Jian et al., Matl. Eng., 1996

Conclusions Correlation of experimental Contact resistivities with theory excellent for P-InGaAs ~4:1 discrepancy for N-InGaAs, N-InAs N-contacts are approaching Landauer Limits theory vs. Landauer: 4:1 discrepancy tunneling probability is high

Transmission Probability, T Potential energy in various regions

Transmission Probability, T (15) Transmission Probability, T Solutions of Schrodinger equation in various regions and are the Airy functions Transmission probability is given by .