Using Quantum Means to Understand and Estimate Relativistic Effects

Slides:



Advertisements
Similar presentations
Henry Haselgrove School of Physical Sciences University of Queensland
Advertisements

1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Quantum Field Theory for Gravity and Dark Energy Sang Pyo Kim Kunsan Nat’l Univ. & APCTP Co sPA2009, U. Melbourne, 2009.
Fixing the lower limit of uncertainty in the presence of quantum memory Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata Collaborators:
报告人: 林 苑 指导老师:章忠志 副教授 复旦大学  Introduction about random walks  Concepts  Applications  Our works  Fixed-trap problem  Multi-trap problem.
Experimental quantum estimation using NMR Diogo de Oliveira Soares Pinto Instituto de Física de São Carlos Universidade de São Paulo
Sudden death of entanglement, teleportation fidelity loss and the Unruh effect Andre G.S. LandulfoAndre G.S. Landulfo and George E.A. Matsas George E.A.
Quantum enhanced metrology R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B. Smith 2, J. Lundeen 2, M. Kacprowicz.
Maximum likelihood (ML)
School of Physics & Astronomy FACULTY OF MATHEMATICAL & PHYSICAL SCIENCE Parallel Transport & Entanglement Mark Williamson 1, Vlatko Vedral 1 and William.
MSEG 803 Equilibria in Material Systems 6: Phase space and microstates Prof. Juejun (JJ) Hu
Can Spacetime curvature induced corrections to Lamb shift be observable? Hongwei Yu Ningbo University and Hunan Normal University Collaborator: Wenting.
Lamb shift in Schwarzschild spacetime Wenting Zhou & Hongwei Yu Department of Physics, Hunan Normal University, Changsha, Hunan, China.
Quantum effects in curved spacetime
Dynamical decoupling in solids
Chapter 26 Relativity. General Physics Relativity II Sections 5–7.
Effective Action for Gravity and Dark Energy Sang Pyo Kim Kunsan Nat’l Univ. COSMO/Co sPA, Sept. 30, 2010 U. Tokyo.
QCCC07, Aschau, October 2007 Miguel Navascués Stefano Pironio Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Cryptographic properties of.
Towards a Universal Count of Resources Used in a General Measurement Saikat Ghosh Department of Physics IIT- Kanpur.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Quantum dynamics of two Brownian particles
H ij Entangle- ment flow multipartite systems [1] Numerically computed times assuming saturated rate equations, along with the lower bound (solid line)
1 MODELING MATTER AT NANOSCALES 4. Introduction to quantum treatments The variational method.
Shear Viscosity and Viscous Entropy Production in Hot QGP at Finite Density 报告人: 刘 绘 华中师范大学 粒子所.
Spacetime Thermodynamics from Geometric Point of View Yu Tian (田雨) Department of Physics, Beijing Institute of Technology.
Influence of dark energy on gravitational lensing Kabita Sarkar 1, Arunava Bhadra 2 1 Salesian College, Siliguri Campus, India High Energy Cosmic.
Quantum interferometric visibility as a witness of general relativistic proper time Bhubaneswar, 21 st December 2011 M. Zych, F. Costa, I. Pikovski, Č.
Quantum Black Holes, Strong Fields, and Relativistic Heavy Ions D. Kharzeev “Understanding confinement”, May 16-21, 2005.
带强磁场奇异星的 中微子发射率 刘学文 指导老师:郑小平 华中师范大学物理科学与技术学院. Pulsar In 1967 at Cambridge University, Jocelyn Bell observed a strange radio pulse that had a regular period.
S.S.GaO. Outline Introduction Experiment Results and discussion Conclusion References.
The effect of Gravity on Equation of State Hyeong-Chan Kim (KNUT) FRP Workshop on String Theory and Cosmology 2015, Chungju, Korea, Nov ,
Based on Phys. Rev. D 92, (R) (2015) 中科大交叉学科理论研究中心
Gravity on Matter Equation of State and the Unruh temperature Hyeong-Chan Kim (KNUT) 2016 FRP workshop on String theory and cosmology Seoul, Korea, June.
From physical assumptions to classical Hamiltonian and Lagrangian particle mechanics Gabriele Carcassi, Christine A. Aidala, David John Baker and Lydia.
M. Abishev, S.Toktarbay, A. Abylayeva and A. Talkhat
Role of entanglement in extracting information on quantum processes
Tijl De Bie John Shawe-Taylor ECS, ISIS, University of Southampton
Equation of State and Unruh temperature
Unruh’s Effect Savan Kharel.
Quantum optics Eyal Freiberg.
Ewha Womans University, Seoul, Korea
Matrix Product States in Quantum Metrology
Thermal radiation of various gravitational backgrounds*
Department of Physics, Hunan Normal University, Changsha, Hunan, China
Fundamental bounds on stability of atomic clocks
M. Stobińska1, F. Töppel2, P. Sekatski3,
the illusion of the Heisenberg scaling
Detector of “Schrödinger’s Cat” States of Light
Could loop quantum gravity corrections
Kyle Schmitt University of Tennessee December 4, 2008
Hawking-Unruh Temperature
Quantum entanglement measures and detection
Peng Wang Sichuan University
Quantum mechanics II Winter 2011
The Grand Unified Theory of Quantum Metrology
Quantum Spacetime and Cosmic Inflation
The Grand Unified Theory of Quantum Metrology
Lev Vaidman 23 August 2004, Cambridge Zion Mitrani Amir Kalev
Geometric Phase in composite systems
Dalian University of Technology, Dalian, China
PHYS 3700 Modern Physics Prerequisites: PHYS 1212, MATH Useful to have PHYS 3900 or MATH 2700 (ordinary differential equations) as co-requisite,
郑 公 平 河南师范大学 第五届全国冷原子物理和量子信息青年学者学术讨论会
Geometric phase and the Unruh effect
Berry phase in graphene: a semi-classical perspective
INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION
Tensor Network Simulations of QFT in Curved Spacetime
Park Gunsu An Daehyun Kim Haram
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Quantum One.
Presentation transcript:

Using Quantum Means to Understand and Estimate Relativistic Effects 报告人: 田泽华 指导老师:荆继良 教授 湖南师范大学

Outline Introduction Open quantum system approach Using Geometric phase corrections to understand thermal nature of de Sitter space-time Optimal quantum estimation of Unruh effect Further works

Relativistic Quantum Information 1. Introduction Relativistic quantum information: Quantum Fields Theory Relativity Theory . Relativistic Quantum Information Information Theory Quantum Information Quantum Mechanics

Resources/Tasks of QI well known: Motivations: Resources/Tasks of QI well known: How are they (entanglement, quantum correlation, quantum teleportation . . . ) affected by Relativity? Are effects degraded/enhanced? Connection between QFT and QI Unruh effect, Hawking effect, Casimir effect New ways to . . . create, store, transmit, process QI Our aim here . . . Utilizing quantum means to understand, detect and estimate relativistic effects

2. Open quantum system approach Hamiltonian: Detector Atom Environment Atom Master equation: Accelerated In curved spacetime In thermal bath Other cases Phys. Rev. A 79, 052109 (2009)

Initial state: Evolving state: Eigenvalues: Eigenvectors:

3. Using geometric phase corrections to understand thermal nature of de Sitter space-time 1. The Hamiltonian H(R) depends on a set of parameters R 2. The external parameters are time dependent, R(T)= R(0) 3. Adiabatic approximation holds M. Berry, Proc. Roy. Soc. A 392, 45 (1984).

Geometric phase in an open quantum system: Environment Atom Geometric phase of the two-level atom: D. M. Tong, E. Sjoqvist, L. C. Kwek, and C. H. Oh, PRL 93.080405 (2004).

Geometric phase of a two-level atom in de Sitter spacetime Freely falling atom: Static atom: N. D. Birrell and P.C. W. Davies, Quantum Fields Theory in Curved Space (Cambridge, University Press,Cambridge, England, 1982)

Zehua Tian and Jiliang Jing,JHEP 04. 109 (2013). Geometric phase of a freely falling atom in de Sitter spacetime Geometric phase: Inertial Thermal Pure phase correction : Zehua Tian and Jiliang Jing,JHEP 04. 109 (2013).

Zehua Tian and Jiliang Jing,JHEP 04. 109 (2013). Geometric phase of a static atom in de Sitter spacetime Proper acceleration: Geometric phase: Inertial Thermal Pure phase correction : Zehua Tian and Jiliang Jing,JHEP 04. 109 (2013).

Conclusions

4. Optimally quantum estimation of Unruh effect Minkowski vacuum No particles T=a/2π Rindler particles

Some questions of estimating Unruh effect: No linear operator that acts as an observable for temperature Unruh temperature Directly detect? Quantum estimation theory Indirectly detect (probe) Other parameters (1) Which is the best probe state? (2) Which is the optimal measurement that should be performed at the output? (3) Which is the attainable precision? (4) Can the precision be improved?

Quantum estimation Optimal measurements Ultimate bounds to precision Cramer-Rao bound (unbiased estimators) Variance of unbiased estimators M  number of measurements F Fisher information Optimal measurement  maximum Fisher information Optimal estimator  saturation of CR inequality

In quantum mechanics:

Exact form of Fisher information Classical: Quantum: SLD operator Mix: Pure:

Quantum Cramer-Rao inequality: Optimal measurement  maximum quantum Fisher infromation Optimal estimator  saturation of quantum CR inequality Accelerated atom: Correlation function: M. G. A. Paris, International Journal of Quantum Information 7,(2009) 125-137.

Optimally quantum estimation of Unruh effect Fisher information based on population measurement: Zehua Tian, Jieci Wang, Heng Fan, and Jiliang Jing, Relativistic quantum metrology in open system dynamics.

Optimally quantum estimation of Unruh effect Quantum Fisher information based on all possible POVM: Zehua Tian, Jieci Wang, Heng Fan, and Jiliang Jing, Relativistic quantum metrology in open system dynamics.

Quantum Fisher information: Optimal condition: Quantum Fisher information: (1) best probe state? (2) the optimal measurement? Population measurement (3) the attainable precision?

Conclusions 1. The maximum Fisher information for population measurement is obtained when and it is independent of any initial preparations of the probe. 2. The same configuration is also corresponding to the maximum of the quantum Fisher information, i.e., the ultimate bound allowed by quantum mechanics to the sensitivity of the Unruh temperature estimation can be achieved based on the population measurement.

5. Further works 1. Can we distinguish different spacetime by quantum means? 2. Can the precision be improved by entanglement, quantum discord and other quantum resources? 3. Experimentally feasible? .

Thank you for your attention