The LIGHT project Status of the LIGHT experiments HICforFAIR PhysicsDay: Accelerator July 5th 2012 GSI Helmholtzcenter for Heavy Ion Research Abel Blazevic.

Slides:



Advertisements
Similar presentations
FAIR accelerator R&D Oliver Kester GSI Helmholtzzentrum für Schwerionenforschung Darmstadt and IAP Goethe-Universität Frankfurt.
Advertisements

Ultrafast laser-driven electric field propagation on metallic surfaces Laser-driven proton beams When an intense short-pulse laser is focused down onto.
Capture, focusing and energy selection of laser driven ion beams using conventional beam elements Morteza Aslaninejad Imperial College 13 December 2012.
Sub-picosecond Megavolt Electron Diffraction International Symposium on Molecular Spectroscopy June 21, 2006 Fedor Rudakov Department of Chemistry, Brown.
H. Haseroth July 26 – August 1, 2004 NuFact04, Osaka 1 The 3 MeV H - Test Stand at CERN - The first part of the SPL - H. Haseroth on behalf of the SPL.
Lasers and Highly-Charged Heavy Ions at Günther RosnerHZDR Workshop, Rossendorf, 6/9/111.
Forschungszentrum Dresden Rossendorf Trevor Burris, Ph.D. Candidate Beam Transport for Laser Accelerators - A Brief Overview of Work at FZD 17 August 2009,
Systems Analysis for Modular versus Multi-beam HIF Drivers * Wayne Meier – LLNL Grant Logan – LBNL 15th International Symposium on Heavy Ion Inertial Fusion.
The Heavy Ion Fusion Virtual National Laboratory Comparison of final focus magnetic systems for the Assisted Pinched Transport and the RPD-2002 J. Barnard,
Update on LLNL FI activities on the Titan Laser A.J.Mackinnon Feb 28, 2007 Fusion Science Center Meeting Chicago.
J. Fils for the PHELIX team GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany Sept Speyer EMMI Workshop The PHELIX High Energy.
Before aperture After aperture Faraday Cup Trigger Photodiode Laser Energy Meter Phosphor Screen Solenoids Successful Initial X-Band Photoinjector Electron.
Laser accelerated ions and their potential for therapy accelerators I. Hofmann, GSI Accelerator Department HIAT09, Venezia, June 8-12, Introduction.
ENHANCED LASER-DRIVEN PROTON ACCELERATION IN MASS-LIMITED TARGETS
Carbon Injector for FFAG
Presented at the 15 th International Symposium on Heavy Ion Driven Inertial Confinement Fusion in Princeton, June 7, 2004 by Matthias Geissel 1,2, Markus.
1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
Ulsan National Institute of Science and Technology Toward a World-Leading University Y.K KIM.
Heavy Ion Fusion Sciences Virtual National Laboratory Warp simulations illustrate the novel acceleration strategy Design Studies for NDCX-II W. M. Sharp,
Experimental part: Measurement the energy deposition profile for U ions with energies E=100 MeV/u - 1 GeV/u in iron and copper. Measurement the residual.
EBIS ARR Jim Alessi May 4- 7, 2010 Technical Overview.
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M.
LDRD: Magnetized Source JLEIC Meeting November 20, 2015 Riad Suleiman and Matt Poelker.
Warp LBNL Warp suite of simulation codes: developed to study high current ion beams (heavy-ion driven inertial confinement fusion). High.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
People Xavier Stragier Marnix van der Wiel (AccTec) Willem op ‘t Root Jom Luiten Walter van Dijk Seth Brussaard Walter Knulst (TUDelft) Fred Kiewiet Eddy.
Assessment of Physics, Applications and Construction Issues for the Proposed Magurele Short-Pulse Facility Silviu Olariu National Institute of Physics.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Proton Driver Design Keith Gollwitzer Fermilab February 19, 2014.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
1 Muon Capture for a Muon Collider David Neuffer July 2009.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
International Conference on Science and Technology for FAIR in Europe 2014 APPA Cave Instrumentation for Plasma Physics Vincent Bagnoud, GSI and Helmholtz.
High intensity electron beam and infrastructure Paolo Valente * INFN Roma * On behalf of the BTF and LINAC staff.
Gabor lenses for capture and energy selection of laser driven ion beams in cancer treatment. J. Pozimski PASI meeting RAL 5 th April 2013 Imperial College.
23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 1 Laser acceleration.
UK Neutrino Factory Conceptual Design
Precision Tests of Fundamental Interactions with Ion Trap Experiments
S.M. Polozov & Ko., NRNU MEPhI
Dielectric Wakefield R&D programme at Daresbury Lab.
SPARCLAB: PW-class Ti:Sa laser+SPARC
New concept of light ion acceleration from low-density target
Collimation Concept for Beam Halo Losses in SIS 100
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
V. Bagnoud PHELIX, Plasma Physics department GSI Darmstadt
In collaboration with Winthrop Brown, T.Y. Fan, Franz Kaertner,
Status and prospects of VEPP-5 Injection Complex
Status of the CLIC main beam injectors
BUNCH LENGTH MEASUREMENT SYSTEM FOR 500 KV PHOTOCATHODE DC GUN AT IHEP
WP11: electron and proton beam testing
Junji Urakawa (KEK) for ATF International Collaboration
Beyond the RF photogun Jom Luiten Seth Brussaard
EffiCAS Efficient Facility for Ions at CAS
SuperB project. Injection scheme design status
Cornell Injector Performance
Capture and Transmission of polarized positrons from a Compton Scheme
Status of the CLIC Injector studies
Short focal length target area: X-ray & ion sources and applications
Z6 experiments and necessary beam parameters
Pulsed Ion Linac for EIC
R. Suleiman and M. Poelker October 12, 2018
Beam size diagnostics using diffraction radiation
Advanced Research Electron Accelerator Laboratory
Physics Design on Injector I
The Nanosecond bunching system at KIGAM Tandem Accelerator
小型X線源の性能確認実験計画 高輝度・RF電子銃研究会 広島大学 高エネルギー加速器研究機構 浦川順治
Injector for the Electron Cooler
Presentation transcript:

The LIGHT project Status of the LIGHT experiments HICforFAIR PhysicsDay: Accelerator July 5th 2012 GSI Helmholtzcenter for Heavy Ion Research Abel Blazevic GSI Darmstadt Plasma Physics Department 05.07.2012 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |

Motivation Optimal use of laser accelerated ions requires beam forming, energy selection and debunching Z6 Target Area PHELIX Leading expertise in both fields (laser acceleration, accelerator technology) available at GSI, surrounding universities, and HI Z6 target area provides access to the PHELIX laser beam and to accelerator hardware (e.g. test beam, RF equipment, diagnostics) We can provide a versatile testbed to study laser-accelerated particles in combination with conventional accelerator structures

LIGHT: Laser Ion Generation, Handling and Transport Step 1: Generation and Characterization of the proton beam Target optimization for high conversion efficiency (laser to ion) and low ion beam divergence angle Ion energy spectrum shaping Step 2: Collimation of the proton beam Separation of the electrons Selection of the proton energy interval Proton beam divergence control Space charge Step 3: Setting up of a buncher unit based on existing 108 MHz technology at GSI Compression of chosen energy interval Diagnostic of the compressed proton bunch Goal: proton bunch with 1010 protons in few ns with an energy of E = 10 MeV and DE = 4% 05.07.2012 | GSI | LIGHT | Abel Blazevic

Contributions / Responsibilities Helmholtz Institute Jena Coordination Development and setup of a 100TW compressor for a 12 cm sub-aperture beam of PHELIX Short pulse diagnostics GSI PHELIX/PP, Acc., Beam Diag., AP Laser, timing, control system Beamline to target chamber Accelerator structures Proton beam diagnostics FZ Dresden-Rossendorf Solenoid for collimation + PSU TU Darmstadt Acceleration experiments Collimation simulations, target development JWG University Frankfurt Accelerator structure development Theoretical support 05.07.2012 | GSI | LIGHT | Abel Blazevic

Laser Ion Generation 2. Juli 2012 | 05.07.2012 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |

Experiment Setup Z6 target chamber sideview and focus diagnostic half beam blocked by RCF in front full stack at back side 360 mm solenoid f-3 OAP target proton beam mirror Laser UNILAC ion beam 05.07.2012 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |

TNSA – Target Normal Sheath Acceleration Number of Protons (surface contamination): 1014 (LLNL- Petawatt), exp. spectrum Maximum Energy: 60 MeV (LLNL Petawatt) 68 MeV (Trident) 65 MeV (Sandia) Pulse duration: few ps Small Emittance Divergence: <10° for highest energies up to 40° for low energies Efficiency: up to 9% Petawatt experiments 3/99 05.07.2012 | GSI | LIGHT | Abel Blazevic

Proton/Ion spectrum (target: F on W) C & O → q/m Proton line → energy F7+, up to 5 MeV/Nucleon → energy → q/m Ion species 05.07.2012 | GSI | LIGHT | Abel Blazevic

Divergence control ∅ 20 – 100 µm Apollo Targets 350 µm 250 µm F c v y f p h s V u l L S w 2 5 8 O - x b Solenoid E 350 µm 250 µm ∅ 20 – 100 µm Mass limited Targets Combine WARP/PSC VORPAL and the Simulation Expertise of GSI/TUD/Frankfurt Cryo Targets 05.07.2012 | GSI | LIGHT | Abel Blazevic

Laser focus shaping Laser pulse solenoid energy filter target (thin metal foil) drift pipe buncher cavity Laser pulse shaping 05.07.2012 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |

Handling 05.07.2012 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |

Pulsed Power Equipment stand alone pulsed power system pulser located in nhelix capacitor bay possible charging up to 16 kV corresponds to 10.4 kA current through coil (Bz,max = 8.7 T) open aperture: 40.5 mm (diameter) high capture efficiency 305 mm beam 150 mm supply cables 4 layers copper windings air 05.07.2012 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |

Beam transport through solenoid Z6 target chamber experimental hall, GSI 1.1 MeV 3.2 MeV RCF pos. 1 layer 1 layer 2 RCF pos. 2 layer 3 layer 4 layer 5 4.5 MeV 5.5 MeV 7.5 MeV shot #17 target - 10 µm Au - flat foil RCF stack detectors 40 265 620 [mm] optional Unilac ion beam proton beam 1 2 pulsed solenoid @ 6.7 kA / 5.6 T laser 1054 nm transport of protons through solenoid - detection of half of the proton beam in front of the solenoid - full stack at the back side of the solenoid to see focussing and rotation of the beam Phelix 100 TW 05.07.2012 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |

Beam focussing into ion beam line Z6 target chamber experimental hall, GSI target - 10 µm Au - flat foil RCF stack detector 40 265 620 [mm] optional Unilac ion beam proton beam layer 3 RCF pos. 3 shot #11 3 pulsed solenoid @ 6.7 kA / 5.6 T focussing of protons into Z6 ion beamline - detection at 925 mm behind target - focussing of 4.5 MeV protons - partikel numbers in focus ~5·108 - focal spot size ~3x4 mm² (FWHM) - focus shape due to 4 mrad tilt of solenoid - reproducible working system - good agreement to simulations laser 1054 nm Phelix 100 TW layer 3 RCF pos. 3 shot #13 05.07.2012 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |

Comparison Experiment and Simulation 3.7 MeV 6.5 MeV 8.7 MeV PHELIX experiment WARP - simulation 05.07.2012 | GSI | LIGHT | Abel Blazevic

Transport 05.07.2012 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |

Next steps: RF-Cavity progress so far.. next step Laser pulse solenoid energy filter target (thin metal foil) drift pipe buncher cavity Plunger Drift Tubes rf cavity specified and tested 3 gap spiral resonator, rebuncher at 108.4 MHz, 35 mm aperture, 100 kW rf power 05.07.2012 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |

RF cavity simulations Laser pulse solenoid energy filter target (thin metal foil) drift pipe buncher cavity Beam transport simulations I 05.07.2012 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |

RF cavity simulations Laser pulse solenoid energy filter target (thin metal foil) drift pipe buncher cavity Beam transport simulations II work of S. Yaramishev 05.07.2012 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |

Thank you ! LIGHT collaboration partners A. Almomani3, V. Bagnoud2,4, W. Barth2, A. Blazevic2,4, O. Boine-Frankenheim1,2, C.Brabetz 3, T. Burris-Mog 5, S. Busold 1, T. Cowan 5, M. Droba 3, H. Eickhoff2, P.Forck 2, A. Gopal 4, K. Harres 1, S. Herzer 4, G. Hoffmeister 1, I. Hofmann2, O.Jäckel4, M. Kaluza 4, O.Kester 2, 3, F. Nürnberg 1, A. Orzhekhovskaya2, G.Paulus4, J. Polz 4, U. Ratzinger 3, C. Rödel 4, M. Roth1, T.Stöhlker2,4, A. Tauschwitz 2, W.Vinzenz 2, S. Yaramyshev 2, B. Zielbauer4 Technical University Darmstadt 1 Helmholtzzentrum GSI Darmstadt 2 Institute for Applied Physics at Frankfurt University 3 Helmholtz-Institute Jena 4 Helmholtzzentrum Dresden-Rossendorf 5 05.07.2012 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |