Napredno prepoznavanje ljudi koristeći Microsoft Azure Cognitive Services SLAVEN MIŠAK, Span d.o.o. IVAN MARKOVIĆ, Span d.o.o.

Slides:



Advertisements
Similar presentations
The Extended Cohn-Kanade Dataset(CK+):A complete dataset for action unit and emotion-specified expression Author:Patrick Lucey, Jeffrey F. Cohn, Takeo.
Advertisements

Creating Pages in XHTML
JSON: { "language": "en", "orientation": "Up", "regions": [ { "boundingBox": "41,77,918,440", "lines": [ { "boundingBox": "41,77,723,89",
 2003 Prentice Hall, Inc. All rights reserved. Chapter 4 - Introduction to XHTML: Part 1 Outline 4.1 Introduction 4.2 Editing XHTML 4.3 First XHTML Example.
 2004 Prentice Hall, Inc. All rights reserved. Introduction to XHTML: Part 1.
The United States Postal Service processed over 150 billion pieces of mail in 2013—far too much for efficient human sorting. But as recently.
EKMAN’S FACIAL EXPRESSIONS STUDY A Demonstration.
Recognizing Emotions in Facial Expressions
+ EQ: How are emotions communicated nonverbally and across cultures?
Computer Science 101 Images in Web Pages. Image Files Two common formats, GIF and JPEG GIF images are more flexible for use as icons JPEG images are sharper.
Microsoft Academic Search Search | Explore | Discover Alex D. Wade Director - Scholarly Communication.
Consuming REST Services from C# SoftUni Team Technical Trainers Software University
Department of Computer Science and Engineering, CUHK 1 Final Year Project 2003/2004 LYU0302 PVCAIS – Personal VideoConference Archives Indexing System.
LECTURE 18 Java and Web Pages. Java Savvy Browser A browser capable of handling java applets: - Netscape Navigator - Microsoft Internet Explorer - Sun.
ICM – API Server & Forms Gary Ratcliffe.
Chris Hewitt, Wild Mouse Male, Age 42, Happy ARC31 2.
REEM ALMOTIRI Information Technology Department Majmaah University.
Ekman’s Facial Expressions Study A Demonstration.
Facial Expressions and Emotions Mental Health. Total Participants Adults (30+ years old)328 Adults (30+ years old) Adolescents (13-19 years old)118 Adolescents.
Power BI for Developers Rui Romano SQLSaturday.com
Cognitive Services SearchSpeech Languag e Knowledg e Visio n.
Developers Introduction to the Power BI Platform.
Introducing Precictive Analytics
Mood Detection.
Machine Learning Best Practices with Alfresco & Activiti
Bhakthi Liyanage SQL Saturday Atlanta 15 July 2017
Microsoft Ignite /4/2018 1:44 PM BRK3105
Microsoft Academic Search Search | Explore | Discover
4/19/ :02 AM © Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN.
Campaign Creation Toolkit: 101
4/23/2018 7:04 AM © Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN.
Intelligent Face Recognition
Globalizing apps and UX with Microsoft Translator text and speech translation API Kelly Altom Program Manager
Mobile App Trends: lifecycle, functions, and cognitive
Supervisor: Prof Michael Lyu Presented by: Lewis Ng, Philip Chan
Automate Custom Solutions Deployment on Office 365 and Azure
Reimagine what is possible with your videos using AI
Machine Learning and Office 365 Collaboration
Building Applications with LUIS
7/6/2018 1:42 PM BRK2391 Making Microsoft AI work for your business with Bing Custom Search and Bing Search API v7 Brian King Group Program Manager Bing.
Introduction to Azure Bot Framework
Building & Applying Emotion Recognition
Changing how people interact with computers
Chapter 4 - Introduction to XHTML: Part 1
Azure Machine Learning & ML Studio
@marco_parenzan Azure Functions e Logic Apps I tuoi coltellini svizzeri per gestire i tuoi dati in un SQL Database.
Leverage the Intelligent Cloud
Office 365 Development.
NIH PDF Guidelines RAFT Session
Web Development & Design Foundations with HTML5 7th Edition
Microsoft SharePoint Server 2013
This meme comes from South Park (S2E )
Facial Login App User Scenario
Microsoft Ignite NZ October 2016 SKYCITY, Auckland.
Basic HTML and Embed Codes
Domingo Mery Department of Computer Science
AHED Automatic Human Emotion Detection
HoloLens Face Emotion Detection
Introduction to HTML- Basics
Technical Capabilities
Introduction into the Power BI REST API Jan Pieter Posthuma
AHED Automatic Human Emotion Detection
Face Detection Gender Recognition 1 1 (19) 1 (1)
Artificial intelligence for everyone
Domingo Mery Department of Computer Science
Bots, so you don't have to be always available to help your customers
AI Immersion Workshop 9/16/2019 9:36 AM
Exploring Cognitive Services
A touch of AI with Cognitive Services
COGNITIVE SERVICES MACHINE LEARNING FOR DEVELOPERS
Presentation transcript:

Napredno prepoznavanje ljudi koristeći Microsoft Azure Cognitive Services SLAVEN MIŠAK, Span d.o.o. IVAN MARKOVIĆ, Span d.o.o.

Agenda Uvod u Azure Cognitive Services Face API Emotion API Demo

UVOD U AZURE COGNITIVE SERVICES

Machine learning Big data Large dataset Machine learning algorithms Extensive testing and validation Target example

Cognitve services origins Microsoft Research Project Oxford (https://projectoxford.ai) Microsoft Azure SaaS How-old.net, TwinsOrNot.net, what-dog.net

Available services Vision Speech Language Knowledge Search Computer vision Emotion Face Video Speech Bing Speech Custom recognition Speaker recognition Language Bing spell check Language understanding Linguistic analysis Text analysis WebLM Knowledge Academic Entity linking Knowledge exploration Recomendations Search Bing web search Bing image search Bing video search Bing news search Bing autosuggest

FACE API

Face API Two main functionalities: Face Detection Face Recognition

Face Detection Detect up to 64 human faces in an image. Face detection can be done: By uploading image file Specifying a URL of an existing image on the web

Face API- Detection Steps Subscribe for Face API and get subscription key Configure the Face API client library (or use REST API) Upload images to detect faces Mark faces in the image

Face API – Get Started faceServiceClient = new FaceServiceClient("Your subscription key"); private async Task<FaceRectangle[]> UploadAndDetectFaces(string imageFilePath) { try using (Stream imageFileStream = File.OpenRead(imageFilePath)) var faces = await faceServiceClient.DetectAsync(imageFileStream); var faceRects = faces.Select(face => face.FaceRectangle); return faceRects.ToArray(); } catch (Exception) return new FaceRectangle[0];

Face API – Get Started var requiedFaceAttributes = new FaceAttributeType[] { FaceAttributeType.Age, FaceAttributeType.Gender, FaceAttributeType.Smile, FaceAttributeType.FacialHair, FaceAttributeType.HeadPose, FaceAttributeType.Glasses }; var faces = await faceServiceClient.DetectAsync(imageUrl, returnFaceLandmarks: true, returnFaceAttributes: requiedFaceAttributes); foreach (var face in faces) { var id = face.FaceId; var attributes = face.FaceAttributes; var age = attributes.Age; var gender = attributes.Gender; var smile = attributes.Smile; var facialHair = attributes.FacialHair; var headPose = attributes.HeadPose; var glasses = attributes.Glasses; }

Face API - Face Attributes Age Gender Smile Facial Hair Head Pose Glasses

Face API – face landmarks 27 predefined landmark points

Face API – Response example JSON: [ { "faceId": "d585cde5-6e2e-4fb9-b46a-2e941a4efe0a", "faceRectangle": { "width": 289, "height": 289, "left": 266, "top": 292 }, "faceLandmarks": { "pupilLeft": { "x": 337.8, "y": 372.4 "pupilRight": { "x": 478.5, "y": 378.1

Face API – Face Recognition Four recognition functionalities: Face Verification Similar Face Searching Automatic Face Grouping Person Identification

Face Verification Request Response { "faceId1":"c5c24a82-6845-4031-9d5d-978df9175426", "faceId2":"015839fb-fbd9-4f79-ace9-7675fc2f1dd9" } { "isIdentical":true, "confidence":0.9 }

Similar Face Searching Request Response { "faceId":"c5c24a82-6845-4031-9d5d-978df9175426", "faceListId":"sample_list", "maxNumOfCandidatesReturned":10 } [ { "persistedFaceId" : "015839fb-fbd9-4f79-ace9-7675fc2f1dd9", "confidence" : 0.82 }, ... ]

Face Grouping Request Response { "faceIds":[ "c5c24a82-6845-4031-9d5d-978df9175426", "015839fb-fbd9-4f79-ace9-7675fc2f1dd9", "65d083d4-9447-47d1-af30-b626144bf0fb", "fce92aed-d578-4d2e-8114-068f8af4492e", "30ea1073-cc9e-4652-b1e3-d08fb7b95315", "be386ab3-af91-4104-9e6d-4dae4c9fddb7", "fbd2a038-dbff-452c-8e79-2ee81b1aa84e", "b64d5e15-8257-4af2-b20a-5a750f8940e7" ] } { "groups": [ [ "c5c24a82-6845-4031-9d5d-978df9175426", "015839fb-fbd9-4f79-ace9-7675fc2f1dd9", "fce92aed-d578-4d2e-8114-068f8af4492e", "b64d5e15-8257-4af2-b20a-5a750f8940e7" ],[ "65d083d4-9447-47d1-af30-b626144bf0fb", "30ea1073-cc9e-4652-b1e3-d08fb7b95315" ] ], "messyGroup": [ "be386ab3-af91-4104-9e6d-4dae4c9fddb7" }

Face Identification Authorize the API call Create the person group Define people for the person group Detect faces and register them to correct person Train the person group Identify a face against a defined person group

Face Identification – result example

Face API – Technical info JPEG, PNG, GIF and BMP are supported. Max. File size is 4MB The detectable face size is between 36x36 and 4096x4096 pixels. A maximum of 64 faces could be detected

EMOTION API

Emotion API Returns the confidence across a set of emotions for each face in the image Happiness Sadness Surprise Anger Fear Contempt Disgust Neutral

Emotion API – Get Started EmotionServiceClient emotionServiceClient = new EmotionServiceClient(subscriptionKey); //Optional parameter FaceRectangles[] Emotion[] emotionResult = await emotionServiceClient.RecognizeAsync(url);

DEMO

Q&A