Chapter 10: Re-Expression of Curved Relationships

Slides:



Advertisements
Similar presentations
Copyright © 2010 Pearson Education, Inc. Slide A least squares regression line was fitted to the weights (in pounds) versus age (in months) of a.
Advertisements

Re-Expressing Data Get it Straight!. Page 192, #2, 4, 15, 19, 22 Residuals Pg 193, # 11, 23, 27, 33, 45 Pg 195, 16, 22, 23,25,37 Regression Wisdom Pg.
 Objective: To determine whether or not a curved relationship can be salvaged and re-expressed into a linear relationship. If so, complete the re-expression.
Chapter 10: Re-expressing data –Get it straight!
Copyright © 2014, 2011 Pearson Education, Inc. 1 Chapter 20 Curved Patterns.
Chapter 10: Re-Expressing Data: Get it Straight
Extrapolation: Reaching Beyond the Data
Chapter 10 Re-Expressing data: Get it Straight
Get it Straight!! Chapter 10
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 10 Re-expressing Data: Get it Straight!
Chapter 10 Re-expressing the data
Re-expressing data CH. 10.
Re-expressing the Data: Get It Straight!
Chapter 10 Re-expressing Data: Get it Straight!!
17.2 Extrapolation and Prediction
Chapter 17 Understanding Residuals © 2010 Pearson Education 1.
Inference for regression - Simple linear regression
Transforming to achieve linearity
Chapter 4: More on Two-Variable (Bivariate) Data.
Statistics Review Chapter 10. Important Ideas In this chapter, we have leaned how to re- express the data and why it is needed.
Chapter 10: Re-Expressing Data: Get it Straight AP Statistics.
Chapter 10: Re-expressing Data It’s easier than you think!
M25- Growth & Transformations 1  Department of ISM, University of Alabama, Lesson Objectives: Recognize exponential growth or decay. Use log(Y.
“Numbers are like people… torture them long enough and they’ll tell you anything...” Linear transformation.
DO NOW Read Pages 222 – 224 Read Pages 222 – 224 Stop before “Goals of Re-expression” Stop before “Goals of Re-expression” Answer the following questions:
Chapter 10 Re-expressing the data
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Chapter 10 Re-expressing Data: Get It Straight!. Slide Straight to the Point We cannot use a linear model unless the relationship between the two.
Chapter 10: Re- expressing Data by: Sai Machineni, Hang Ha AP STATISTICS.
Lecture 6 Re-expressing Data: It’s Easier Than You Think.
Copyright © 2010 Pearson Education, Inc. Slide A least squares regression line was fitted to the weights (in pounds) versus age (in months) of a.
Bivariate Data Analysis Bivariate Data analysis 4.
Chapter 8 Linear Regression HOW CAN A MODEL BE CREATED WHICH REPRESENTS THE LINEAR RELATIONSHIP BETWEEN TWO QUANTITATIVE VARIABLES?
Reexpressing Data. Re-express data – is that cheating? Not at all. Sometimes data that may look linear at first is actually not linear at all. Straight.
If the scatter is curved, we can straighten it Then use a linear model Types of transformations for x, y, or both: 1.Square 2.Square root 3.Log 4.Negative.
Chapter 5 Lesson 5.4 Summarizing Bivariate Data 5.4: Nonlinear Relationships and Transformations.
Re-Expressing Data. Scatter Plot of: Weight of Vehicle vs. Fuel Efficiency Residual Plot of: Weight of Vehicle vs. Fuel Efficiency.
Copyright © 2010 Pearson Education, Inc. Chapter 10 Re-expressing Data: Get it Straight!
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 10 Re-expressing Data: Get it Straight!
Chapter 10 Notes AP Statistics. Re-expressing Data We cannot use a linear model unless the relationship between the two variables is linear. If the relationship.
Chapter 4 More on Two-Variable Data. Four Corners Play a game of four corners, selecting the corner each time by rolling a die Collect the data in a table.
Statistics 10 Re-Expressing Data Get it Straight.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 10 Re-expressing Data: Get it Straight!
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 12 More About Regression 12.2 Transforming.
 Understand why re-expressing data is useful  Recognize when the pattern of the data indicates that no re- expression will improve it  Be able to reverse.
Statistics 200 Lecture #6 Thursday, September 8, 2016
Scatterplots, Association, and Correlation
Chapter 10: Re-expressing Data (Get it Straight)
WARM UP: Use the Reciprocal Model to predict the y for an x = 8
Let’s Get It Straight! Re-expressing Data Curvilinear Regression
Inferences for Regression
Re-expressing the Data: Get It Straight!
Bell Ringer Make a scatterplot for the following data.
Chapter 10 Re-Expressing data: Get it Straight
Re-expressing Data: Get it Straight!
Re-expressing the Data: Get It Straight!
Re-expressing the Data: Get It Straight!
Graphs in Physics.
So how do we know what type of re-expression to use?
Re-expressing Data:Get it Straight!
CHAPTER 12 More About Regression
Prediction and Accuracy
Lecture 6 Re-expressing Data: It’s Easier Than You Think
CHAPTER 12 More About Regression
Inferences for Regression
Chapters Important Concepts and Terms
CHAPTER 12 More About Regression
Re-expressing Data: Get it Straight!
Presentation transcript:

Chapter 10: Re-Expression of Curved Relationships Objective: To determine whether or not a curved relationship can be salvaged and re-expressed into a linear relationship. If so, complete the re-expression.

Re-Expressing Data We cannot use a linear model unless the relationship between the two variables is linear. Often re-expression can save the day, straightening bent relationships so that we can fit and use a simple linear model. Two simple ways to re-express data are with logarithms and reciprocals.

Re-Expressing Data (cont.) Original Scatterplot Residual Plot The relationship between fuel efficiency (in miles per gallon) and weight (in pounds) for late model cars looks fairly linear at first: A look at the residuals plot shows a problem:

Re-Expressing Data (cont.) Re-Expressed Scatterplot Re-Expressed Residual Plot We can re-express fuel efficiency as gallons per hundred miles (a reciprocal-multiplying each by 100) and eliminate the bend in the original scatterplot: A look at the residuals plot for the new model seems more reasonable:

Ladder of Powers There is a family of simple re-expressions that move data toward our goals in a consistent way. This collection of re-expressions is called the Ladder of Powers. The Ladder of Powers orders the effects that the re-expressions have on data. The farther you move from “1” in the ladder of powers, the greater the effect on the original data.

Ladder of Powers (cont.) Ratios of two quantities (e.g., mph) often benefit from a reciprocal. The reciprocal of the data –1 An uncommon re-expression, but sometimes useful. Reciprocal square root –1/2 Measurements that cannot be negative often benefit from a log re-expression. We’ll use logarithms here “0” Counts often benefit from a square root re-expression. Square root of data values ½ Data with positive and negative values and no bounds are less likely to benefit from re-expression. Raw data 1 Try with unimodal distributions that are skewed to the left. Square of data values 2 Comment Name Power

Examples Using the ladder of powers, what transformations might you use as a starting point? You want to model the relationship between the number of birds counted at a nesting site and the temperature (in degrees Celsius). The scatterplot of counts vs. temperature shows an upwardly curving pattern, with more birds spotted at higher temperatures. You want to model the relationship between prices for various items in Paris and in Hong Kong. The scatterplot of Hong Kong prices vs. Parisian prices shows a generally straight pattern with a small amount of scatter. You want to model the population growth of the US over the past 200 years. The scatterplot shows a strongly upwardly curved pattern.

Plan B: Attack of the Logarithms When none of the data values is zero or negative, logarithms can be a helpful ally in the search for a useful model. Try taking the logs of both the x- and y-variable. Then re-express the data using some combination of x or log(x) vs. y or log(y).

Plan B: Attack of the Logarithms When none of the data values is zero or negative, logarithms can be a helpful ally in the search for a useful model. Try taking the logs of both the x- and y-variable. Then re-express the data using some combination of x or log(x) vs. y or log(y).

Plan B: Attack of the Logarithms (cont.)

Why Not Just Use a Curve? If there’s a curve in the scatterplot, why not just fit a curve to the data?

Why Not Just Use a Curve? (cont.) The mathematics and calculations for “curves of best fit” are considerably more difficult than “lines of best fit.” Besides, straight lines are easy to understand. We know how to think about the slope and the y-intercept.

Example Let’s try an example to note the techniques to re-express that tuition rates verses the years at Arizona State University: Years since 1990 Tuition 6546 1 6996 2 3 7350 4 7500 5 7978 6 8377 7 8710 8 9110 9 9411 10 9800

What Can Go Wrong? Re-expression cannot pull separate modes together. Beware of multiple modes. Re-expression cannot pull separate modes together. Watch out for scatterplots that turn around. Re-expression can straighten many bent relationships, but not those that go up then down, or down then up.

What Can Go Wrong? (cont.) Watch out for negative data values. It’s impossible to re-express negative values by any power that is not a whole number on the Ladder of Powers or to re-express values that are zero for negative powers. Watch for data far from 1. Data values that are all very far from 1 may not be much affected by re-expression unless the range is very large. If all the data values are large (e.g., years), consider subtracting a constant to bring them back near 1.

Assignments Day 1: pp. 239-244 # 1, 2, 5, 6, 7 Day 2: pp. 239-244 # 14, 15, 16