LYRA Tests and Calibration

Slides:



Advertisements
Similar presentations
GEM Chambers at BNL The detector from CERN, can be configured with up to 4 GEMs The detector for pad readout and drift studies, 2 GEM maximum.
Advertisements

AITA 9, MERTIS Team – MERTIS Calibration, Oct 2007 Folie 1 Development of a calibration concept for the MErcury Thermal Infrared Spectrometer Thomas Saeuberlich,
Temporal and Frequency Variations of Flares observed by LYRA onboard of PROBA2 B. Foing (1), D. Vagg(2), M. Dominique(3),
Solar flare studies with the LYRA - instrument onboard PROBA2 Marie Dominique, ROB Supervisor: G. Lapenta Local supervisor: A. Zhukov.
LYRA on-board PROBA2: instrument performances and latest results M. Dominique (1), I. Dammasch (1), M. Kretzschmar (1,2) (1) Royal Observatory of Belgium.
ABRF meeting 09 Light Microscopy Research Group. Why are there no standards? Imaging was largely an ultrastructure tool Digital imaging only common in.
Impact of the Particle Environment on LYRA Data M. Dominique, A. BenMoussa, M.Kruglanski, L. Dolla, I. Dammasch, M. Kretzschmar PROBA2 workshop, May 04.
LYRA status update M. Dominique and I. Dammasch ESWW9, Brussels 2012.
Uncertainty considerations for the calibration of transfer standard radiation thermometers Graham Machin, NPL.
Institutes Royal Observatory of Belgium (Brussels, BE) Principal Investigator, overall design, onboard software specification, science operations PMOD/WRC.
The chemical composition of the middle atmosphere - a nowcasting product based on irradiance observations of the experiments LYRA/PROBA2 and PREMOS/PICARD.
Characterization of CF 4 primary scintillation Andrey Morozov.
PROBA2 a Space Weather Monitor Matthew J West ESWW10 - Nov 2013.
Thermal evolution of flares observed by PROBA2/LYRA I. E. Dammasch, M. Dominique, M. Kretzschmar (ROB/SIDC), P. C. Chamberlin (NASA/GSFC) COSPAR 39 th.
Solar Irradiance Observations with LYRA on PROBA2 I. E. Dammasch, M. Dominique, J.-F. Hochedez & the LYRA Team X th Hvar Astrophysical Colloquium Hvar,
LYRA on-board PROBA2 EUV irradiance inter-calibration workshop M. Dominique + LYRA team October 2011, LASP.
LYRA Status PROBA2 workshop February 2011 M. Dominique + LYRA team.
Status of the PiN diodes irradiation tests B. Abi( OSU), R. Boyd (OU), P. Skubic (OU), F. Rizatdinova (OSU), K.K. Gan (Ohio State U.)
Five years of EUV solar irradiance evolution, from short to long timescales as observed by PROBA2/LYRA I.E. Dammasch, M. Dominique, L. Wauters, A. Katsiyannis,
 ESA’s “PRoject for On-Board Autonomy”  Belgian microsatellite in Sun-synchronous orbit  725 km altitude  Launched 02 Nov 2009  Nominal operations.
Werner Schmutz, PMOD/WRC Status of the space weather experiments LYRA/PROBA2 and PREMOS/PICARD PMOD/WRC COST 724 project: Short-term variability.
LYRA occultations Meeting 2011/05/05. LYRA: Occultations Lyman α Herzberg Aluminum Zirconium EUVUV Vis (IR ?) Lyman α: very sensitive to Visible and InfraRed.
LYRA Calibration using TIMED and SORCE I. E. Dammasch, ROB/SIDC Solar EUV Irradiance Working Group Inter-Calibration and Degradation of EUV Instruments.
Degradation of LYRA on PROBA2 after two years in orbit I. E. Dammasch STCE Workshop Brussels, 03 May 2012 LYRA the Large-Yield Radiometer onboard PROBA2.
PACS NHSC SPIRE Point Source Spectroscopy Webinar 21 March 2012 David Shupe, Bernhard Schulz, Kevin Xu on behalf of the SPIRE ICC Extracting Photometry.
- “Level” refers to the long-term irradiance, measured as the significant daily minimum, i.e. without flares or instrumental artefacts. - “Variance” refers.
Preliminary measurements for the 8 channel prototype of SPD discriminator ASIC I.The 8 channel prototype. II.Status of the test. III.Noise. IV.Gain. V.Test.
First Results from the LYRA Solar UV Radiometer J.-F. Hochedez, I. E. Dammasch, M. Dominique & the LYRA Team COSPAR 38 th Scientific Assembly Bremen
LYRA Calibration DRB Meeting ESTEC 15 June 2007 LYRA the Lyman-alpha Radiometer onboard PROBA-2.
DECam Daily Flatfield Calibration DECam calibration workshop, TAMU April 20 th, 2009 Jean-Philippe Rheault, Texas A&M University.
8.1.4 Can it still be factored? Factoring Completely I can factor out a common factor.
FTS Test Definition Summary Kaley Walker Test Readiness Review January 29, 2003.
SNAP Calibration Program Steps to Spectrophotometric Calibration The SNAP (Supernova / Acceleration Probe) mission’s primary science.
Correlation between sunspot numbers and EUV irradiance as observed by LYRA on PROBA2 Ingolf. E. Dammasch & Laure Lefevre, ROB SIDC Seminar, Brussels, 10.
MONITOR OF SOLAR EUV/XUV IRRADIATION PHOKA A. Kochemasov Astrophysics institute at Moscow engineering-physics institute.
LYRA Science Data Products Forthcoming Abstract The satellite PROBA2, built in Belgium and to be launched this summer, is an ESA micro-mission for the.
Solar Irradiance Observations with LYRA on PROBA2 (An Introduction) I. E. Dammasch, M. Dominique & the LYRA Team Royal Observatory of Belgium LYRA the.
Prediction of solar flares on the basis of correlation with long-term irradiance and sunspot levels Ingolf E. Dammasch, Marie Dominique (ROB) SIDC Seminar,
Kinetic Temperature Retrievals from MGS TES Bolometer Measurements: Current Status and Future Plans A.A. Kutepov, A.G. Feofilov, L.Rezac July 28, 2009,
LYRA Calibration, Data Products, Plans I. E. Dammasch, ROB/SIDC PROBA2 Science Meeting Sun 360, Kiel, Jul 2011 LYRA the Large-Yield Radiometer onboard.
LHC Beam Loss Monitors, B.Dehning 1/15 LHC Beam loss Monitors Loss monitor specifications Radiation tolerant Electronics Ionisation chamber development.
BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
LYRA Instrumental Effects T. Katsiyannis & M. Dominique on behalf of the LYRA team.
Components of soft X-ray and extreme ultraviolet in flares observed by LYRA I. E. Dammasch, M. Dominique, M. Kretzschmar (ROB/SIDC), P. C. Chamberlin (NASA/GSFC)
Diagnostics and Optimization Procedures for Beamline Control at BESSY A. Balzer, P. Bischoff, R. Follath, D. Herrendörfer, G. Reichardt, P. Stange.
Two years of solar observation with PROBA2/LYRA: An overview I. E. Dammasch, M. Dominique, M. Kretzschmar (ROB/SIDC), XII th Hvar Astrophysical Colloquium.
LYRA calibration considering the evolution of dark currents I. E. Dammasch, ROB/SIDC Solar EUV Irradiance Working Group Inter-Calibration and Degradation.
LYRA Calibration Status I. E. Dammasch, ROB/SIDC PROBA2 Science Working Team Meeting ROB, Brussels, Belgium, 24 Jun 2013 LYRA the Large-Yield Radiometer.
Solar Irradiance Observations with LYRA on PROBA2 (An Introduction) I. E. Dammasch, M. Dominique & the LYRA Team Royal Observatory of Belgium LYRA the.
Satlantic HyperPro II Freefalling hyperspectral radiometer Can be deployed in “floater” mode 16 bit ADC at 12 Hz (maximum) 0 - ~100 m depth rating, descent.
A. Ealet Berkeley, december Spectrograph calibration Determination of specifications Calibration strategy Note in
UVIS calibration update Greg Holsclaw Bill McClintock Jan 8,
LYRA Tests and Selections SCSL Meeting Bern 29 Nov - 01 Dec 2006 LYRA the Lyman-alpha Radiometer onboard PROBA-2.
Digital Light Sources First introduced in 2001.
The “Monitor to measure the Integral TRAnsmittance” (MITRA)
Mid-term Periodicities of the LYRA data spectrum
M. Dominique, I.E. Dammasch, L. Wauters, T. Kastiyannis
LYRA on-board software
in-orbit operations and achievements
Combining SWAP and LYRA observations
the Lyman-alpha Radiometer onboard PROBA-2
Instrument Characterization: Status
Instrument Considerations
Synergies between solar UV radiometry and imaging
EUS NI spectrograph design constraints
UVIS Calibration Update
Configuration and Tests
Optics Measurements in the PSB
KFPA CDR R. Norrod Feb 27, 2008.
Presentation transcript:

LYRA Tests and Calibration the Lyman-alpha Radiometer onboard PROBA-2 LYRA Tests and Calibration LYRA Meeting Davos 05/06 Oct 2006

Contents I. From Model to Configuration II. BESSY Campaigns a. Flux Linearity b. Stability, Drift c. LEDs, Dark Current d. Spectral Responsivity e. Homogeneity, Flatfield f. Cadence, Response Time III. Summary IV. Additional Topics

I. From Model to Configuration Choice of filters: Zirconium (150 nm, 300 nm), Aluminium, Lyman-alpha (N, XN, VN, and combinations thereof), Herzberg, … Choice of detectors: MSMxx (diamond), PINxx (diamond), AXUVxx (silicon), … Tested separately to find transmittance and responsivity Simulated with TIMED-SEE solar spectra to find expected response values and purities cf. http://lyra.oma.be/radiometric_model/radiometric_model.php Example: “high” flux + “Herzberg” filter + “PIN” detector

Selected configurations: filter detector nominal FWHM measured 1-1 Ly XN + MSM12 121.5 +/- nm 116-126 nm 1-2 Herzberg + PIN10 200-220 nm 197-218 nm 1-3 Aluminium + MSM11 17-80 nm (1)-2.4, 17-35 nm 1-4 Zr (300nm) + AXUV20D 1-20 nm (1)-1.3, 6-15 nm 2-1 Ly XN + MSM21 121.5 +/- nm 116-126 nm 2-2 Herzberg + PIN11 200-220 nm 199-219 nm 2-3 Aluminium + MSM15 17-80 nm (1)-1.4, 17-27 nm 2-4 Zr (150nm) + MSM19 1-20 nm (1)-1.3, 6-12 nm 3-1 Ly N+XN + AXUV20A 121.5 +/- nm 116-126 nm 3-2 Herzberg + PIN12 200-220 nm 198-219 nm 3-3 Aluminium + AXUV20B 17-80 nm (1)-2.4, 17-35 nm 3-4 Zr (300nm) + AXUV20C 1-20 nm (1)-1.3, 6-15 nm

Consequence: All channels individual No simple redundancy Combined responsivities New estimates for response and purity (cf. II d.)

II. BESSY Campaigns NI beamline (40 – 240 nm, 60 C) July 2005 Doc. RP-ROB-LYR-0132-NI-July2005 GI beamline (1 – 30 nm, 60 C) July 2005 Doc. RP-ROB-LYR-0132-GI-July2005 (Final) NI beamline (40 – 240 nm, 37 C) March 2006 Doc. RP-ROB-LYR-0132-NI-March2006 (Final) GI beamline (1 – 30 nm, 37 C) March 2006 Doc. RP-ROB-LYR-0132-GI-March2006

a. Flux Linearity Using different aperture stops, or Varying exit slit of monochromator Relation fitted (2006) with a function I=[c+]a*P^b Results: almost linear, slightly sub/superlinear, sub/superlinear (qualitatively) or: b~1, c~0 (quantitatively)

Results in detail: NI 2006 GI 2005 NI 2006 GI 2006 (121.6 nm, 200 nm) (20 nm, 10 nm) (121.6 nm, 210 nm, 50 nm) (18 nm, 10 nm) 1-1 MSM slightly sublin. 0.99572 1-2 PIN slightly superlin. 1.00656 1-3 MSM 0.98565 1.1719, but c>0 1-4 AXUV 1.00155 2-1 MSM slightly sublin. 1.03661 2-2 PIN slightly superlin. 0.99483 2-3 MSM superlinear 1.02234 0.97894 2-4 MSM slightly superlin. 1.04009 3-1 AXUV almost linear 1.02434 3-2 PIN almost linear 0.99529 3-3 AXUV sublinear 0.00230 0.99253 3-4 AXUV almost linear 1.00064

b. Stability, Drift Shutter was opened and closed every 60 s, then every 600 s Some additional longer tests were executed BESSY 2005 campaigns (60 C) still to be analyzed in detail LED values, dark current values and 44 C, 50 C temperature effects: see below Example: Channel 2-1 (Ly XN + MSM21) at BESSY NI 2006

Results (2006) in detail: start drift stop 1-1 MSM slow upward tail (“slow” ~min, “almost immediate” ~s) (“tail” ~min, “almost immediate” ~s) 1-1 MSM slow upward tail 1-2 PIN almost immediate (almost) no almost immediate 1-3 MSM almost immediate, slow upward tail, almost immediate 1-4 AXUV immediate no immediate 2-1 MSM slow upward tail 2-2 PIN almost immediate (almost) no immediate 2-3 MSM slow upward almost immediate 2-4 MSM slow upward almost immediate 3-1AXUV (almost) immediate (almost) no almost immediate 3-2 PIN almost immediate no immediate 3-3 AXUV (almost) immediate (almost) no (almost) immediate 3-4 AXUV immediate no almost immediate

c. LEDs, Dark Current visLED uvLED offset @37 C 44 C 50 C 1-1 MSM (0.005) (0.024) 0.001 0.010 1-2 PIN 0.004 0.014 0.000 -0.002 1-3 MSM (0.100) 0.000, -0.007 0.003 0.010 1-4 AXUV -0.004 2-1 MSM (0.012) (0.023) 0.001 0.009 2-2 PIN 0.015 -0.001 -0.002 -0.005 2-3 MSM ((0.016-0.136)) 0.000, -0.008 0.002 0.007 2-4 MSM -0.001 3-1 AXUV 0.000? 0.000 0.002 0.008 3-2 PIN 0.006 -0.003 -0.005 3-3 AXUV (1.059) -0.001, -0.011 -0.003 -0.005 3-4 AXUV -0.014 All values in nA (x) = varying around x, ((x-y)) = unstable from y to x, “negative” current values due to conversion

d. Spectral Responsivity Filters and detectors measured together (“channels” as configurated) Relevant spectral range is tested, with special attention to range borders V changed to A using appropriate gain resistor Corrections for ring current applied Example: “high” solar flux simulated with measurements of channel 1-1 (Ly XN + MSM12) at BESSY NI 2006 How to estimate “correction factors”? Consequences for data levels?

Expected Signal and Purity theorectical: “min” “high” measured: “min” “high” 1-1 MSM 0.139 nA (37%) 0.161 nA (44%) 0.240 nA (24%) 0.267 nA (30%) 1-2 PIN 12.75 nA (86%) 12.77nA (86%) 12.57 nA (83%) 12.59 nA (83%) 1-3 MSM 0.120 nA (61%) 5.264 nA ( 3%) 0.086 nA (58%) 4.945 nA ( 3%) 1-4 AXUV 0.530 nA (99%) 15.37 nA (88%) 0.699 nA (100%) 19.09 nA (100%) 2-1 MSM 0.115 nA (39%) 0.135 nA (46%) 0.104 nA (21%) 0.114 nA (26%) 2-2 PIN 13.80 nA (83%) 13.82 nA (83%) 13.75 nA (84%) 13.76 nA (84%) 2-3 MSM 0.127 nA (73%) 3.821 nA ( 6%) 0.074 nA (59%) 3.837 nA ( 3%) 2-4 MSM 0.111 nA (99%) 2.878 nA (100%) 0.094 nA (100%) 2.772 nA (100%) 3-1 AXUV 0.132 nA (46%) 0.156 nA (54%) 0.113 nA (81%) 0.148 nA (84%) 3-2 PIN 10.20 nA (85%) 10.22 nA (85%) 10.15 nA (83%) 10.16 nA (83%) 3-3 AXUV 1.072 nA (75%) 34.95 nA ( 6%) 1.090 nA (72%) 36.83 nA ( 5%) 3-4 AXUV 0.530 nA (99%) 15.37 nA (88%) 0.710 nA (100%) 19.31 nA (100%)

Calibration Factor, Data Levels How to estimate the solar signal from the LYRA signal? LYRA signal * purity / area / responsivity = solar signal [A] [%] [m2] [A W-1] [W m-2] \___________________/ calibration factor Example: “max”, “high”, “min” flux + Channels 1-1, 1-2, 1-3, 1-4 Use constant factor, linear dependency on signal, knowledge about solar flux? Change public data each time when calibration factor gets more realistic? Use different data levels?

e. Homogeneity, Flatfield Example: Channel 2-3 (detector diameter 4.2 mm) What consequences will an off-pointing have?

f. Cadence, Response Time Example: Signal vs. integration time Channel 2-3 (Aluminium + MSM15) at BESSY GI 2006

III. Summary Linearity Stability LEDs Signal, Purity 1-1 MSM + -- + - 1-2 PIN + + + ++ 1-3 MSM --- - +? -- 1-4 AXUV + + ?? +++ 2-1 MSM + - + - 2-2 PIN + + + ++ 2-3 MSM -- - -? -- 2-4 MSM + - ?? +++ 3-1 AXUV + + - + 3-2 PIN + + +? ++ 3-3 AXUV - + +? -- 3-4 AXUV + + ?? +++

IV. Additional Topics Cross-calibration Degradation of filters, detectors, LEDs Tests to be performed Normal cadence (acquisition rate) Nominal units Rate of calibration with LEDs