Micro-programmed Control

Slides:



Advertisements
Similar presentations
Control Unit Implemntation
Advertisements

CHAPTER 16 MICROPROGRAMMED CONTROL DR. H. WATSON FRANCISCO VASQUEZ
Topics covered: CPU Architecture CSE 243: Introduction to Computer Architecture and Hardware/Software Interface.
PART 5: (2/2) Processor Internals CHAPTER 15: CONTROL UNIT OPERATION 1.
Computer Architecture
1 ITCS 3181 Logic and Computer Systems 2014 B. Wilkinson Slides8.ppt Modification date: Nov 3, 2014 Random Logic Approach The approach described so far.
MICROPROGRAM CONTROL.
Chapter 16 Control Unit Operation No HW problems on this chapter. It is important to understand this material on the architecture of computer control units,
CS364 CH17 Micro-programmed Control
Chapter 16 Control Unit Implemntation. A Basic Computer Model.
Preparation for Midterm Binary Data Storage (integer, char, float pt) and Operations, Logic, Flip Flops, Switch Debouncing, Timing, Synchronous / Asynchronous.
Chapter 15 IA 64 Architecture Review Predication Predication Registers Speculation Control Data Software Pipelining Prolog, Kernel, & Epilog phases Automatic.
Chapter 7. Basic Processing Unit
Computer Organization and Architecture
Group 5 Alain J. Percial Paula A. Ortiz Francis X. Ruiz.
Micro-operations Are the functional, or atomic, operations of a processor. A single micro-operation generally involves a transfer between registers, transfer.
Microprogrammed Control Chapter 17. Team Members Guillermo Cordon Ernesto Vivanco Brian Hadley Angel Carlos Castro.
Introduction to Computer Organization and Architecture Micro Program ภาษาเครื่อง ไมโครโปรแกรม.
Multiple-bus organization
Florida International University Chapter 17 Micro-programmed Control Molina, Francisco Pineiro, Michael Romero, Rubymir.
CONTROL UNIT OPERATION MICROPROGRAMMED CONTROL. 2.
Dr Mohamed Menacer College of Computer Science and Engineering Taibah University CE-321: Computer.
Chapter 16 Micro-programmed Control
MICROPROGRAMMED CONTROL CH 17 Team # 2 Members: Wilmer Saint-Hilaire Alberto Mollinedo Vinicius Schuina Luis Perez.
1 Control Unit Operation and Microprogramming Chap 16 & 17 of CO&A Dr. Farag.
Microprogrammed Control Chapter11:. Two methods for generating the control signals are: 1)Hardwired control o Sequential logic circuit that generates.
5-1 Chapter 5—Processor Design—Advanced Topics Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan Chapter.
PART 6: (1/2) Enhancing CPU Performance CHAPTER 16: MICROPROGRAMMED CONTROL 1.
Lecture 15 Microarchitecture Level: Level 1. Microarchitecture Level The level above digital logic level. Job: to implement the ISA level above it. The.
1  1998 Morgan Kaufmann Publishers Value of control signals is dependent upon: –what instruction is being executed –which step is being performed Use.
Basic Elements of Processor ALU Registers Internal data pahs External data paths Control Unit.
MICROPROGRAMMED CONTROL
Pertemuan 13 : Micro-programmed Control. Control Unit Organization.
GROUP 2 CHAPTER 16 CONTROL UNIT Group Members ๏ Evelio L. Hernandez ๏ Ashwin Soerdien ๏ Andrew Keiper ๏ Hermes Andino.
Types of Micro-operation  Transfer data between registers  Transfer data from register to external  Transfer data from external to register  Perform.
Functions of Processor Operation Addressing modes Registers i/o module interface Memory module interface Interrupts.
Basic Concepts Microinstructions The control unit seems a reasonably simple device. Nevertheless, to implement a control unit as an interconnection of.
Controller Implementation
Computer Organization and Architecture + Networks
Chapter 9 a Instruction Level Parallelism and Superscalar Processors
Micro-Operations A computer executes a program Fetch/execute cycle
William Stallings Computer Organization and Architecture
William Stallings Computer Organization and Architecture 7th Edition
Processor Organization and Architecture
Chapter 15 Control Unit Operation
Micro-programmed Control Unit
Central Processing Unit CPU
Basic Processing Unit Unit- 7 Engineered for Tomorrow CSE, MVJCE.
Controller Implementation--Part II
Some Fundamental Concepts
Control Unit Introduction Types Comparison Control Memory
Processor Organization and Architecture
William Stallings Computer Organization and Architecture 7th Edition
Chapter 14 Control Unit Operation
William Stallings Computer Organization and Architecture 8th Edition
Computer Architecture
Chapter 14 Control Unit Operation
Chapter 15 Microprogrammed Control
Basic Processing Unit UNIT-5.
William Stallings Computer Organization and Architecture
Computer Architecture
Processor Organization and Architecture
Presentation transcript:

Micro-programmed Control

Typical Microinstruction Formats Horizontal microinstruction Vertical microinstruction Such a microinstruction is interpreted as follows: To execute this microinstruction, turn on all the control lines indicated by a 1 bit; leave off all control lines indicated by a 0 bit. The resulting control signals will cause one or more micro-operations to be performed. 2. If the condition indicated by the condition bits is false, execute the next microinstruction in sequence. 3. If the condition indicated by the condition bits is true, the next microinstruction to be executed is indicated in the address field.

Typical Microinstruction Formats

Organization of Control Memory These control words or microinstructions could be arranged in a control memory. The microinstructions in each routine are to be executed sequentially. Each routine ends with a branch or jump instruction indicating where to go next. There is a special execute cycle routine whose only purpose is to signify that one of the machine instruction routines (AND,ADD, and so on) is to be executed next, depending on the current op-code.

Control Unit Micro-architecture The control unit functions as follows: To execute an instruction, the sequencing logic unit issues a READ command to the control memory. 2. The word whose address is specified in the control address register is read into the control buffer register. 3. The content of the control buffer register generates control signals and next address information for the sequencing logic unit. 4. The sequencing logic unit loads a new address into the control address register based on the next-address information from the control buffer register and the ALU flags.

Depending on the value of the ALU flags and the control buffer register, one of three decisions is made: • Get the next instruction: Add 1 to the control address register. • Jump to a new routine based on a jump microinstruction: Load the address field of the control buffer register into the control address register. • Jump to a machine instruction routine: Load the control address register based on the op-code in the IR.

Control Unit Organization

Implementation (1) All the control unit does is generate a set of control signals Each control signal is on or off Represent each control signal by a bit Have a control word for each micro-operation Have a sequence of control words for each machine code instruction Add an address to specify the next micro-instruction, depending on conditions

Today’s large microprocessor Implementation (2) Today’s large microprocessor Many instructions and associated register-level hardware Many control points to be manipulated This results in control memory that Contains a large number of words co-responding to the number of instructions to be executed Has a wide word width Due to the large number of control points to be manipulated

Micro-program Word Length Based on 3 factors Maximum number of simultaneous micro-operations supported The way control information is represented or encoded The way in which the next micro-instruction address is specified

Micro-instruction Types Each micro-instruction specifies single (or few) micro-operations to be performed (vertical micro-programming) Each micro-instruction specifies many different micro-operations to be performed in parallel (horizontal micro-programming)

Vertical Micro-programming Width is narrow n control signals encoded into log2 n bits Limited ability to express parallelism Considerable encoding of control information requires external memory word decoder to identify the exact control line being manipulated

Horizontal Micro-programming Wide memory word High degree of parallel operations possible Little encoding of control information

Compromise Divide control signals into disjoint groups Implement each group as separate field in memory word Supports reasonable levels of parallelism without too much complexity

Organization of Control Memory

Control Unit

Control Unit Function Sequence login unit issues read command Word specified in control address register is read into control buffer register Control buffer register contents generates control signals and next address information Sequence login loads new address into control buffer register based on next address information from control buffer register and ALU flags

Depending on ALU flags and control buffer register Next Address Decision Depending on ALU flags and control buffer register Get next instruction Add 1 to control address register Jump to new routine based on jump microinstruction Load address field of control buffer register into control address register Jump to machine instruction routine Load control address register based on opcode in IR

Functioning of Microprogrammed Control Unit

Matrix partially filled with diodes During cycle, one row activated Wilkes Control 1951 Matrix partially filled with diodes During cycle, one row activated Generates signals where diode present First part of row generates control Second generates address for next cycle

Wilkes's Microprogrammed Control Unit

Advantages and Disadvantages of Microprogramming Simplifies design of control unit Cheaper Less error-prone Slower

Q. Explain Microinstruction Sequencing ? 2 basic Tasks Done By Micro-programmed Control Unit Microinstruction sequencing Microinstruction execution

Design Considerations Size of microinstructions Minimizing the size of the control memory reduces the cost of that component Address generation time To execute microinstructions as fast as possible

Sequencing Techniques Based on current microinstruction, condition flags, contents of IR, control memory address must be generated. Based on format of address information Two address fields Single address field Variable format

Branch Control Logic: Two Address Fields

Branch Control Logic: Single Address Field

Branch Control Logic: Variable Format

Variable format This approach provides the two entirely different microinstruction formats. In 1st format, the some bits are used to activate control signals. In the 2nd format, some bits used for the branch logic module, and the remaining bits provide the address With the first format, the next address is either the next sequential address or an address derived from the instruction register. With the second format, either a conditional or unconditional branch is being specified. One disadvantage of this approach is that one entire cycle is consumed with each branch microinstruction.

Que. Explain Micro-instruction Execution The cycle is the basic event Each cycle is made up of two events Fetch Execute

Work Of Execution Effect is to generate control signals Some control points internal to processor Rest go to external control bus or other interface

Control Unit Organization

A Taxonomy of Microinstructions Vertical/horizontal Packed/unpacked Hard/soft microprogramming Direct/indirect encoding

Improvements over Wilkes Wilkes had each bit directly produced a control signal or directly produced one bit of next address More complex address sequencing schemes, using fewer microinstruction bits, are possible Require more complex sequencing logic module Control word bits can be saved by encoding and subsequently decoding control information

How to Encode K different internal and external control signals Not all used Two sources cannot be gated to same destination Register cannot be source and destination Only one pattern presented to ALU at a time Only one pattern presented to external control bus at a time Require Q < 2K which can be encoded with log2Q < K bits Not done As difficult to program as pure decoded (Wilkes) scheme Requires complex slow control logic module Compromises More bits than necessary used Some combinations that are physically allowable are not possible to encode

Specific Encoding Techniques Microinstruction organized as set of fields Each field contains code Activates one or more control signals Organize format into independent fields Field depicts set of actions (pattern of control signals) Actions from different fields can occur simultaneously Alternative actions that can be specified by a field are mutually exclusive Only one action specified for field could occur at a time

Microinstruction Encoding Direct Encoding

Microinstruction Encoding Indirect Encoding

Required Reading Stallings chapter 16