Inquiry Cycle Upper Blue ES
Youth Learn
Criteria for a successful inquiry 1. Start with a guided exploration of a topic as a whole class. 2. Proceed to student small group inquiry about an open-ended, debatable, contended issue. 3. Encourage students to ask personally relevant and socially significant questions. 4. Work in groups to achieve diversity of views. 5. Predict, set goals, define outcomes. 6. Find or create information...look for patterns. 7. Instruction serves as a guide to help students meet their goals. 8. Create a tangible artifact that addresses the issue, answers questions, and makes learning visible and accountable. 9. Learning is actualized and accountable in the design accomplishment. 10. Arrive at a conclusion...take a stand...take action. 11. Document, justify, and share conclusion with larger audience. NIU
The Benefits of Inquiry * increases accountability, independence and internalization of knowledge Guccione, L. M. (2011). In a world of mandates, making space for inquiry. Reading Teacher, 64(7), 515-519. Hribar, K. (2009). A journey toward inquiry: Implementing the standards in a fixed-schedule environment. Knowledge Quest, 38(2), 20-23. * allows students to develop their critical thinking skills and apply them to authentic situations Corlu, M. A. & Corlu, M. S. (2012). Scientific inquiry based professional development models in teacher education. Educational Science: Theory & Practice, 12(1), 514-521. * critical thinking, competency, collaboration, communication, and creativity are what students will need to succeed in the 21st century Jansen, B.A. (2011). Inquiry unpacked: an introduction to inquiry-based learning. Library Media Connection, 29 (5), 10-12. *retention rate of curriculum understanding is higher for students that participate in inquiry-based experiences than for students taught in a typical fashion Balım, A. (2009). The effects of discovery learning on students' success and inquiry learning skills. Eurasian Journal Of Educational Research (EJER), (35), 1-20. Kwon, O., Rasmussen, C., & Allen, K. (2005). Students' retention of mathematical knowledge and skills in differential equations. School Science & Mathematics, 105(5), 227-239. Mehalik, M. M., Doppelt, Y., & Schuun, C. D. (2008). Middle-school science through design-based learning versus scripted inquiry: Better overall science concept learning and equity gap reduction. Journal Of Engineering Education, 97(1), 71-85. Durham, Y., McKinnon, T., & Schulman, C. (2007). Classroom experiments: Not just fun and games. Economic Inquiry, 45(1), 162-178.
The Benefits of Inquiry *students are inspired to delve deeper into topics and increase their understanding, outperforming students in typical teacher-driven classrooms White, Barbara, Todd A. Shimoda, and John R. Frederiksen. 1999. Enabling Students to Construct Theories of Collaborative Inquiry and Reflective Learning: Computer Support for Metacognitive Development. International Journal of Artificial Intelligence in Education 10: 151-182. Marx, Ronald W., Phyllis C. Blumenfeld, Joseph S. Krajcik, Barry Fishman, Elliot Soloway, Robert Geier, and Revital Tali Tal. 2004. Inquiry-Based Science in the Middle Grades: Assessment of Learning in Urban Systemic Reform. Journal of Research in Science Teaching 41 (10):1063-1080. Nystrand, Martin and Adam Gamoran. 1991. Instructional discourse, student engagement, and literature achievement. Research in the Teaching of English 25: 261–290. * inquiry-based teaching that is done well closes the achievement gap between high and low performing students Kahle, J. B., J. Meece, and K. Scantlebury. 2000. Urban African-American middle school science students: Does standards-based teaching make a difference? Journal of Research in Science Teaching 37 (9):1019-1041. Applebee, Arthur N., Judith A. Langer, Martin Nystrand and Adam Gamoran. 2003. Discussion-Based Approaches to Developing Understanding: Classroom Instruction and Student Performance in Middle and High School English. American Educational Research Journal 40 (3): 685-730. * students with learning disabilities, English Language Learners, and students with diverse cultural backgrounds, all benefit from the collaboration and more hands-on approach that accompanies inquiry. Amaral, Olga, Leslie Garrison, Michael Klentschy. 2002. Helping English learners increase achievement through inquiry-based science instruction. Bilingual Research Journal 26 (2): 225-234. McCarty, T.L., Regina Hadley Lynch, Stephen Wallace, AnCita Benally. 1991. Classroom Inquiry and Navajo Learning Styles: A Call for Reassessment. Anthropology and Education Quarterly 22 (1):42-59. Scruggs, T. E. and M.A. Mastropieri. 1993. Reading versus doing: The relative effects of textbook based and inquiry-oriented approaches to science learning in special education classrooms. Journal of Special Education 27 (1):1-15. http://www.inspiredteaching.org/wp-content/uploads/impact-research-briefs-inquiry-based-teaching.pdf