Solving Literal Equations

Slides:



Advertisements
Similar presentations
Solving Literal Equations
Advertisements

Objective The student will be able to: solve equations using multiplication and division. Designed by Skip Tyler, Varina High School.
Objective The student will be able to: solve equations using multiplication and division. Designed by Skip Tyler, Varina High School.
Foundations of Algebra Literal Equations Practice.
 Sometimes you have a formula and you need to solve for some variable other than the "standard" one. Example: Perimeter of a square P=4s It may be that.
5-3 Equations as Relations
Solving Equations Medina1 with Multiplication and Division.
Solving Literal Equations
Solving Equations Medina1 Variables on Both Sides.
Solving Equations and Inequalities 1-7 and 1-8 English Casbarro Unit 1 : Relations and Functions.
Solving Linear Equations
Solve Linear Systems by Substitution January 28, 2014 Pages
Objective The student will be able to: solve equations using multiplication and division.
Solving Algebra Equations Objective: To solve all kinds of algebra equations.
Section 3.2 Solving Equations using Multiplication and Division.
Formulas & Functions Formula – an algebraic expression that relates two or more real-life quantities.
2.2 Solving Two- Step Equations. Solving Two Steps Equations 1. Use the Addition or Subtraction Property of Equality to get the term with a variable on.
Objective The student will be able to: solve equations using multiplication and division. Designed by Skip Tyler, Edited by Mr. Nealey.
11.3 Solving Radical Equations Definitions & Rules Simplifying Radicals Practice Problems.
Solving 2 step equations. Two step equations have addition or subtraction and multiply or divide 3x + 1 = 10 3x + 1 = 10 4y + 2 = 10 4y + 2 = 10 2b +
Solving Equations with Variables on Both Sides. Review O Suppose you want to solve -4m m = -3 What would you do as your first step? Explain.
1) Solve. -5t = 60 To get the variable by itself, which number needs to be moved? -5 To move the -5, you have to do the opposite operation. What operation.
Balancing Equations The student will be able to: solve equations using addition and subtraction.
Jeopardy Solving Equations
HA1-175 Solving Literal Equations
Objective The student will be able to:
Lesson 3.2 Solving Equations with Multiplication and Division
Solving Algebra Equations
Rewrite a formula with three variables
Solving Multi-Step Equations
Solving Two- Step Equations
Solve for variable 3x = 6 7x = -21
Solving Two- Step Equations
Solving Literal Equations
6-2 Solving Systems By Using Substitution
Objective The student will be able to:
Example 2 4 m 8 m 5m 12 m x y.
Objective The student will be able to:
Solving Multi-Step Equations
Solving Literal Equations
Example 2 4 m 8 m 5m 12 m x y.
Objective The student will be able to:
Solving Multi-Step Equations
Do Now 1) t + 3 = – 2 2) 18 – 4v = 42.
Solving for Variables Section 1.6.
2-4 Solving Multi-Step Equations
Solving Literal Equations
Warm Up Solve each equation
Objectives Solve systems of linear equations in two variables by elimination. Compare and choose an appropriate method for solving systems of linear equations.
Solving Two-Step Equations
Solving Multi-Step Equations
Objective The student will be able to:
Solving literal equations
Solving Multi-Step Equations
Solving for a Variable In a Formula
Solving Multi-Step Equations
Objective The student will be able to:
Standard Form to Slope-Intercept Form.
Lesson 7-6 Multiplying a Polynomial by a Monomial
5a + 3 = 2a a = 2a a = 2a + 9 5a – 2a = 9 3a = 9 a = 9
Solve equations using multiplication and division.
Objective The student will be able to:
Objective The student will be able to:
DO NOW Copy down your homework: 2-2 Lesson check on page 91
Solving Linear Equations
Solving Algebraic Equations with Addition and Subtraction
Objective Solve radical equations.. Objective Solve radical equations.
5-Minute Check Solve each equation. Check your solution. x/3 =
Solving Algebraic Equations with Addition and Subtraction
Homework Review.
Presentation transcript:

Solving Literal Equations

Sometimes you have a formula and you need to solve for some variable other than the "standard" one. Example: Perimeter of a square P=4s It may be that you need to solve this equation for s, so you can plug in a perimeter and figure out the side length.

This process of solving a formula for a given variable is called "solving literal equations".

One of the dictionary definitions of "literal" is "related to or being comprised of letters”. Variables are sometimes referred to as literals.

So "solving literal equations" may just be another way of saying "taking an equation with lots of variables, and solving for one variable in particular.”

To solve literal equations, you do what you've done all along to solve equations, except that, due to all the variables, you won't necessarily be able to simplify your answers as much as you're used to doing.

Here's how "solving literal equations" works: Suppose you wanted to take the formula for the perimeter of a square and solve it for ‘s’ (or the side length) instead of using it to solve for perimeter. P=4s How can you get the ‘s’ on a side by itself?

P=4s Just as when you were solving linear equations, you want to isolate the variable. So, what do you have to do to get rid of the ‘4’?

P=4s That’s right, you have to divide by ‘4’. You also have to remember to divide both sides by 4.

This new formula allows us to use the perimeter formula to find the length of the sides of a square if we know the perimeter.

Let’s look at another example: 2Q-c = d Multiply both sides by 2.        Subtract ‘c’ from each side.

As you can see, we sometimes must do more that one step in order to isolate the targeted variable. You just need to follow the same steps that you would use to solve any other ‘Multi-Step Equation’.

Work these on your paper. 1. d = rt for ‘r’ 2. P = 2l +2w for ‘w’ 3. for ‘t’

Check your answers. 1. d = rt for ‘r’ 2. P = 2l +2w for ‘w’ 3. for ‘t’

Homework