Visit for more Learning Resources

Slides:



Advertisements
Similar presentations
Waveguides.
Advertisements

Fiber Optics Communication
Waveguides Rectangular Waveguides TEM, TE and TM waves
PH0101 Unit 2 Lecture 4 Wave guide Basic features
ENE 428 Microwave Engineering
Notes 7 ECE Microwave Engineering Waveguides Part 4:
ENE 428 Microwave Engineering
EM Waveguiding Overview Waveguide may refer to any structure that conveys electromagnetic waves between its endpoints Most common meaning is a hollow metal.
Optical Waveguide and Resonator
Microwave Engineering
8. Wave Reflection & Transmission
MAXWELL’S EQUATIONS AND TRANSMISSION MEDIA CHARACTERISTICS
Chapter 3: Waveguides and Transmission Lines
x z y 0 a b 0 0 a x EyEy z rectangular waveguides TE 10 mode.
Chapter 2 Waveguide.
Waveguides An Introduction P Meyer Department of Electrical and Electronic Engineering University of Stellenbosch December 2008.
Rectangular Waveguides
EE 230: Optical Fiber Communication Lecture 3 Waveguide/Fiber Modes From the movie Warriors of the Net.
MAXWELL’S EQUATIONS AND TRANSMISSION MEDIA CHARACTERISTICS
PHY 712 Spring Lecture 191 PHY 712 Electrodynamics 10-10:50 AM MWF Olin 107 Plan for Lecture 19: Start reading Chap. 8 in Jackson. A.Examples of.
WAVEGUIDE AND COMPONENTS
Prepared by: Ronnie Asuncion
Lecture 18 Chapter XI Propagation and Coupling of Modes in Optical Dielectric Waveguides – Periodic Waveguides Highlights (a) Periodic (corrugated) WG.
Microwave Engineering, 3rd Edition by David M. Pozar Copyright © 2004 John Wiley & Sons Figure 3.1 (p. 92) (a) General two-conductor transmission line.
OBJECTIVES To become familiar with propagation of signals through lines Understand signal propagation at Radio frequencies Understand radio propagation.
Lecture 6.
Prof. D. R. Wilton Notes 19 Waveguiding Structures Waveguiding Structures ECE 3317 [Chapter 5]
Notes 5 ECE Microwave Engineering Waveguides Part 2:
Rectangular Waveguides
Yi HUANG Department of Electrical Engineering & Electronics
Chapter 2: Transmission lines and waveguides
Lecture 5.
1 Waveguides. Copyright © 2007 Oxford University Press Elements of Electromagnetics Fourth Edition Sadiku2 Figure 12.1 Typical waveguides.
ENE 428 Microwave Engineering
WAVEGUIDES.
Chapter 6 OPTICAL FIBERS AND GUIDING LAYERS
Microwave Devices.
Rectangular Waveguide
02/25/2015PHY 712 Spring Lecture 181 PHY 712 Electrodynamics 9-9:50 AM Olin 103 Plan for Lecture 18: Complete reading of Chapter 7 1.Summary of.
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 10 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Notes 6 ECE Microwave Engineering Fall 2015 Waveguides Part 3: Attenuation 1.
Except otherwise noted, this work is licensed under a Creative Commons Attribution 4.0 International License. Modes in infinite slab waveguides ELEC-E3240.
Chapter 2 Overview 1.
ENE 429 Antenna and Transmission lines Theory Lecture 7 Waveguides DATE: 3-5/09/07.
Chapter XII Propagation of Optical Beams in Fibers
Hanyang University 1/29 Antennas & RF Devices Lab. Partially filled wave guide Jeong Gu Ho.
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 11 ECE 6340 Intermediate EM Waves 1.
RESONATORS AND WAVEGUIDES
Notes 13 ECE 6340 Intermediate EM Waves Fall 2016
Notes 5 ECE Microwave Engineering Waveguides Part 2:
Waveguide Chapter 2. Chapter Outlines Chapter 2 Waveguide  Rectangular Waveguide Fundamentals  Waveguide Field Equations  Parallel Plate Waveguide.
Notes 5 ECE Microwave Engineering
Light Waves and Polarization
ENE 428 Microwave Engineering
Microwave Engineering
Contents Introduction, Microwave Spectrum and Bands Applications of Microwaves. Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields Characteristic.
Microwave Engineering
ENE 429 Antenna and Transmission Lines Theory
Notes 10 ECE 6340 Intermediate EM Waves Fall 2016
Microwave Engineering
7e Applied EM by Ulaby and Ravaioli
Two-Plate Waveguide PEC plate Subject to b.c. Subject to b.c.
Two-Plate Waveguide
Applied Electromagnetic Waves Rectangular Waveguides
Rectangular Waveguide
Chapter 14. Waveguide and Antenna Fundamentals
7e Applied EM by Ulaby and Ravaioli
Transmission Lines and Waveguides
2nd Week Seminar Sunryul Kim Antennas & RF Devices Lab.
PH0101 Unit 2 Lecture 4 Wave guide Basic features
Presentation transcript:

Visit for more Learning Resources Waveguides Rectangular Waveguides TEM, TE and TM waves Cutoff Frequency Wave Propagation Wave Velocity, Visit for more Learning Resources

Waveguides Circular waveguide Rectangular waveguide In the previous chapters, a pair of conductors was used to guide electromagnetic wave propagation. This propagation was via the transverse electromagnetic (TEM) mode, meaning both the electric and magnetic field components were transverse, or perpendicular, to the direction of propagation. In this chapter we investigate wave-guiding structures that support propagation in non-TEM modes, namely in the transverse electric (TE) and transverse magnetic (TM) modes. In general, the term waveguide refers to constructs that only support non-TEM mode propagation. Such constructs share an important trait: they are unable to support wave propagation below a certain frequency, termed the cutoff frequency. Optical Fiber Dielectric Waveguide

Rectangular Waveguide Let us consider a rectangular waveguide with interior dimensions are a x b, Waveguide can support TE and TM modes. In TE modes, the electric field is transverse to the direction of propagation. In TM modes, the magnetic field that is transverse and an electric field component is in the propagation direction. The order of the mode refers to the field configuration in the guide, and is given by m and n integer subscripts, TEmn and TMmn. The m subscript corresponds to the number of half-wave variations of the field in the x direction, and The n subscript is the number of half-wave variations in the y direction. A particular mode is only supported above its cutoff frequency. The cutoff frequency is given by Location of modes

Rectangular Waveguide The cutoff frequency is given by Rectangular Waveguide Location of modes Table 7.1: Some Standard Rectangular Waveguide Waveguide Designation a (in) b t fc10 (GHz) freq range WR975 9.750 4.875 .125 .605 .75 – 1.12 WR650 6.500 3.250 .080 .908 1.12 – 1.70 WR430 4.300 2.150 1.375 1.70 – 2.60 WR284 2.84 1.34 2.08 2.60 – 3.95 WR187 1.872 .872 .064 3.16 3.95 – 5.85 WR137 1.372 .622 4.29 5.85 – 8.20 WR90 .900 .450 .050 6.56 8.2 – 12.4 WR62 .311 .040 9.49 12.4 - 18

To understand the concept of cutoff frequency, you can use the analogy of a road system with lanes having different speed limits.

Rectangular Waveguide Let us take a look at the field pattern for two modes, TE10 and TE20 In both cases, E only varies in the x direction; since n = 0, it is constant in the y direction. For TE10, the electric field has a half sine wave pattern, while for TE20 a full sine wave pattern is observed.

Rectangular Waveguide Example Let us calculate the cutoff frequency for the first four modes of WR284 waveguide. From Table 7.1 the guide dimensions are a = 2.840 mils and b = 1.340 mils. Converting to metric units we have a = 7.214 cm and b = 3.404 cm. TM11 TE10: TE10 TE20 TE01 TE11 TE01: TE20: TE11: For more detail contact us