An Introduction to Molecular Orbital Theory

Slides:



Advertisements
Similar presentations
Introduction to Computational Chemistry NSF Computational Nanotechnology and Molecular Engineering Pan-American Advanced Studies Institutes (PASI) Workshop.
Advertisements

Molecular Bonding Molecular Schrödinger equation
Introduction to Molecular Orbitals
Chapter 3 Electronic Structures
Chemistry 6440 / 7440 Semi-Empirical Molecular Orbital Methods.
Computational Chemistry
Molecular Modeling: Semi-Empirical Methods C372 Introduction to Cheminformatics II Kelsey Forsythe.
Problems with Valence Bond Theory
Quantum Mechanics & Molecular Structure Quantum Mechanics : Quantum mechanics is the foundation of all chemistry and biology. Statistical mechanics rests.
Atomic and Molecular Orbitals l The horizontal rows of the periodic table are called Periods. l Each period represents a different quantum energy level.
Molecular Orbitals.
Electronic Structure of Organic Materials - Periodic Table of Elements - Rayleigh-Ritz Principle - Atomic Orbitals (AO) - Molecular Orbitals (MO - LCAO)
20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.
CHEMISTRY 2000 Topic #1: Bonding – What Holds Atoms Together? Spring 2008 Dr. Susan Lait.
1.12 Electron Waves and Chemical Bonds. Valence Bond Theory Molecular Orbital Theory The Lewis model of chemical bonding predates the idea that electrons.
John E. McMurry Paul D. Adams University of Arkansas Atomic and Molecular Orbitals.
CHEMISTRY 2000 Topic #1: Bonding – What Holds Atoms Together? Spring 2010 Dr. Susan Lait.
An Introduction to Molecular Orbital Theory. Levels of Calculation Classical (Molecular) Mechanics quick, simple; accuracy depends on parameterization;
Calculation of Molecular Structures and Properties Molecular structures and molecular properties by quantum chemical methods Dr. Vasile Chiş Biomedical.
Molecular Modeling: Semi-Empirical Methods C372 Introduction to Cheminformatics II Kelsey Forsythe.
Molecular Modeling : Beyond Empirical Equations Quantum Mechanics Realm C372 Introduction to Cheminformatics II Kelsey Forsythe.
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 23 The Chemical Bond in Diatomic Molecules.
Chapter 9 Molecular Shapes -shape of molecule is based on bond angles Valence Shell Electron Pair Repulsion (VSEPR) -based on the idea that electron groups.
Chem 1140; Molecular Modeling Molecular Mechanics Semiempirical QM Modeling CaCHE.
Statistical Mechanics and Multi- Scale Simulation Methods ChBE Prof. C. Heath Turner Lecture 02 Some materials adapted from Prof. Keith E. Gubbins:
Chemistry 100 Chapter 9 Molecular Geometry and Bonding Theories.
Atoms are bonded together by electrons, but what is a bond? A bond forms when two atomic orbitals overlap to make a molecule more stable than when there.
Chemistry 100 Chapter 9 Molecular Geometry and Bonding Theories.
MOLECULAR STRUCTURE CHAPTER 14 Experiments show O 2 is paramagnetic.
Atomic QM to Molecular QM ( ) Solution of SE for molecules is more complicated due to much larger number of electrons and multiple nuclei – SE.
June 10, 2009 – Class 37 and 38 Overview
Statistical Mechanics and Multi- Scale Simulation Methods ChBE Prof. C. Heath Turner Lecture 07 Some materials adapted from Prof. Keith E. Gubbins:
Molecular Orbitals An overview. MO Theory Robert Mullikan won the Nobel Prize in 1966 for developing this theory. This theory describes the electrons.
1 Chapter 10 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Bonding II: Molecular Geometry and Hybridization.
MODELING MATTER AT NANOSCALES 3. Empirical classical PES and typical procedures of optimization Classical potentials.
Molecular Modeling. Molecular Modeling: Visualizations & Predictions Numerical Methods Integral Method Semi-Empirical MO-SCF Methods Approximate MO Methods.
Why do bonds form? Energy of two separate H atoms Lennard-Jones potential energy diagram for the hydrogen molecule. Forces involved: We understand that.
Lecture 10. Chemical Bonding. H 2 Molecule References Engel, Ch. 12 Ratner & Schatz, Ch. 10 Molecular Quantum Mechanics, Atkins & Friedman (4th ed. 2005),
Chemistry 700 Lectures. Resources Grant and Richards, Foresman and Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc., 1996)
1 MODELING MATTER AT NANOSCALES 5. The theory of molecular orbitals for the description of nanosystems (part I) Hückel Molecular Orbitals.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc. Permission required.
Atomic Quantum Mechanics - Hydrogen Atom ( ) Assuming an atom doesn’t move in space (translate), the SE is reduced to solving for the electrons.
CHEMISTRY 2000 Topic #1: Bonding – What Holds Atoms Together? Spring 2008 Dr. Susan Lait.
Ch 12. Chemical Bond in Diatomic Molecules MS310 Quantum Physical Chemistry The chemical bond is at the heart of chemistry. A qualitative molecular orbital.
1.12 Electron Waves and Chemical Bonds. Models for Chemical Bonding Valence Bond Theory Molecular Orbital Theory The Lewis model of chemical bonding predates.
Lecture 8. Chemical Bonding
1 + S 12 1 E 1 =   1 = c 1  1 + c 1  S 12 1 E 2 = -   2 = c 1  1 - c 1  2 bonding antibonding.
Advanced Organic Chemistry (Chapter 1) sh.Javanshir نظریه اوربیتال مولکولی هوکل n در مولکول های مسطح مزدوج، سیستم  را می توان مستقل از چارچوب 
Molecular Orbital Theory 1.MO theory suggests that atomic orbitals of different atoms combine to create MOLECULAR ORBITALS 2. Electrons in these MOLECULAR.
Course 1: Introduction Warren J. Hehre, A Guide to Molecular Mechanics and Quantum Chemical Calculations, Wavefunction, Inc Von Karman Ave., Suite.
Quantum Mechanical Description of Molecules Glenn V. Lo Department of Physical Sciences Nicholls State University.
Computational chemistry May Computer & chemistry.
Why do molecules form? Molecular bonds Rotations Vibrations Spectra Complex planar molecules Molecules CHAPTER 9 Molecules Johannes Diderik van der Waals.
Molecular Bonding Molecular Schrödinger equation
Computational Chemistry:
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Example: water (bent shape).
Solid state physics Lecture 3: chemical bonding Prof. Dr. U. Pietsch.
Today’s Quiz What is ground-state electron configuration?
18.1 Electron Waves and Chemical Bonds
Hamiltonian for the H atom
X y z (1s + 1s) σ.
Introduction to Molecular Orbital Theory
Chapter 1B Carbon Compounds and Chemical Bonds
Atomic Orbitals.
Physical Chemistry Chapter V Polyatomic Molecular Structure 2019/4/10
Molecular Orbital Theory
P.G Department of Chemistry Govt. P.G College Rajouri
Presentation transcript:

An Introduction to Molecular Orbital Theory

1-3- نظریه اربیتال مولکولی محاسبات اربیتال مولکولی تيوری (بدون هیچگونه تقریب)ab initio نیمه تجربی empirical semi تجربی empirical

Computational Techniques: a) Ab Initio: STO-1G, STO-3G, 3-21G, 6-31G* ,… J. Am. Chem. Soc.; 1975, 97(6), 1319. J. Am. Chem. Soc.; 1975, 97(6), 1338. J. Am. Chem. Soc.; 1975, 97(6), 1347. b) Semi Empirical: Extended Hückel, CNDO, MNDO, MNDO/3, AM1, …

MNDO: Modified Neglect of Differential Overlap J. Am. Chem. Soc.; 1977, 99(15), 4907. J. Am. Chem. Soc.; 1977, 99(15), 4899. MNDO/3: J. Am. Chem. Soc.; 1975, 97(6), 1285. J. Am. Chem. Soc.; 1975, 97(6), 1294. J. Am. Chem. Soc.; 1975, 97(6), 1302. J. Am. Chem. Soc.; 1975, 97(6), 1307. AM1: J. Am. Chem. Soc.; 1985, 107(13), 3902.

Ab Initio Calculations: a) fewer assumption b) complex calculation c) more calculation time But More Reliable Results Semi Empirical Calculations: a) using of more approximation b) less complex and faster calculation c) less calculation time Less Reliable Results

The molecular orbital theory of organic chemistry Michael J. S. Dewar The molecular orbital theory of organic chemistry Michael J. S. Dewar. Published 1969 by McGraw-Hill in New York

For CH3- EMin occur at b= 23.6° Ab Initio 4-31G Calculations for CH3 Cation, Radical, and Anion Deformation from Planarity For CH3- EMin occur at b= 23.6° Fig. 1.8: Total energy as function of distortion from planarity for CH3●, CH3+, and CH3-. J. Am. Chem. Soc.; 1976, 98(21), 6483.

Properties Calculated by Molecular Orbital Theory Geometry (bond lengths, angles, dihedrals) Energy (enthalpy of formation, free energy) Vibrational frequencies, UV-Vis spectra NMR chemical shifts IP, Electron affinity Atomic charge distribution (...but charge is poorly defined) Electrostatic potential Dipole moment.

Basis of Molecular Orbital Theory Schrödinger equation: E  = H  (can be solved exactly ONLY for the Hydrogen atom, but nothing larger!!)

Molecular Orbital Theory Approximations to the MO Theory Orbital Approximation It is not possible to find an exact solution for the electronic wave function in a many-electron system. It can be expressed as a product of one-electron wave functions. el(e1,e2…en)=1(e1)2(e2)…,n(en) where i are the molecular orbitals of the system. In this expression, electron-electron interactions are neglected. More complicated expressions treat the interactions between electrons for a many-electron system.

Utilizes three approximations to allow “solution” of many-e- Schrödinger equation Born-Oppenheimer approximation electrons act independently of nuclei Hartree-Fock approximation electrons experience the ‘field’ of all other electrons as a group, not individually LCAO Molecular orbitals can be constructed as linear combinations of atom-centered orbitals

The Born-Oppenheimer approximation The nuclei (mN >> 2000 me) move relatively slow, and can be treated as stationary while the e–s move relative to them. Then solve the Schrödinger equation for the wave function of the e– alone!! This approximation is quit good for the ground state molecule. Ex) nuclei in H2 — move ~ 1 pm e– in H2 — spread ~ 1000 pm nucleus A nucleus B treat R as fixed R

Schrödinger equation: kinetic energy (nuc.) kinetic energy (elect.) 2 kinetic energy terms plus 3 Coulombic energy terms: (one attractive, 2 repulsive)

Schrödinger equation after Born-Oppenheimer Approximation kinetic energy (nuc.) kinetic energy (elect.) 1 kinetic energy term plus 2 Coulombic energy terms: (one attractive, 1 repulsive) plus a constant for nuclei constant

نظریه اوربیتال مولکولی نظریه جدیدی است برای توجیه پیوند شیمیایی که از معادله موجی اوربیتال های اتمی ناشی می شود. از ترکیب خطی معادله موجی اوربیتال های اتمی، اوربیتال های جدیدی به دست می آیند که به آنها اوربیتالهای مولکولی می گویند. ترکیب خطی اوربیتال های اتمی Linear Combination of Atomic Orbitals “LCAO” 15

Molecular Orbital Theory There, unlike in valence bond theory, electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule. The total number of orbitals is conserved; i.e., the number of MOs equals the number of original atomic orbitals. The theory asserts that atomic orbitals no longer hold signifcant meaning after atoms form a molecule, and that electrons no longer belong to any particular atom but to the molecule as a whole.

LCAO Approximation Electron positions in molecular orbitals can be approximated by a Linear Combination of Atomic Orbitals. This reduces the problem of finding the best functional form for the molecular orbitals to the much simpler one of optimizing a set of coefficients (cn) in a linear equation:  = c1 f1 + c2 f2 + c3 f3 + c4 f4 + … where  is the molecular orbital wave function and fn represent atomic orbital wave functions.

1-اوربیتالهای مولکولی پیوندی 2-اوربیتالهای مولکولی ضدپیوندی اوربیتالهای اتمی: ترکیب خطی اوربیتالهای اتمی: 1-اوربیتالهای مولکولی پیوندی 2-اوربیتالهای مولکولی ضدپیوندی ترکیب خطی اوربیتالهایp ترکیب خطی اوربیتالهای s 18

Construction of Molecular Orbitals 2+=(ca(1sa) + cb(1sb))2 = ca22(1sa)+cb22(1sb)+2cacb(1sa)(1sb) ca22(1sa) is the probability of finding the electron on the 1sa atomic orbital. 2cacb(1sa)(1sb) is the interaction term and relates to the probability of finding the electron between the atoms. The positive term indicates bonding between the atoms.

Construction of Molecular Orbitals 2-=(ca(1sa) - cb(1sb))2 = ca22(1sa)+cb22(1sb)-2cacb(1sa)(1sb) ca22(1sa) is the probability of finding the electron on the 1sa atomic orbital. In this situation, -2cacb(1sa)(1sb) is the interaction term. The electrons in this orbital are excluded from the region between the atoms. The negative term indicates antibonding between the atoms. The surface where the electron is excluded is called a nodal surface.

LCAO-MO’s bindend: anti-bindend ─ 2─ + 2+ 5-6-2018  21

Atomic Orbital Energies and Mos 2- 2+ Here the atomic orbitals have different energies. The bonding MO is closer to atom A, the antibonding MO closer to atom B. Both atomic orbitals of same energy cA = cB

MO Energy diagrams for H2+, H2, He2+, and He2

MO Energy diagram for HHe+ Unsymmetrical Diagram More Charged and also more electronegative species have lower energy levels

Methods for Construction of MO Diagrams a) Photo electron Spectroscopy (Ionization Potential; up to 20 eV, for valance electrons) b) Electron Spectroscopy for Chemical Analysis (ESCA); Binding Energy for core electrons UV or X-Ray Source Binding Energy = Photon Energy – K.E. of The Emitted Electron