6.  Molecular spectroscopy / Litrófsgreining sameinda;

Slides:



Advertisements
Similar presentations
Molecular Bonds Molecular Spectra Molecules and Solids CHAPTER 10 Molecules and Solids Johannes Diderik van der Waals (1837 – 1923) “You little molecule!”
Advertisements

Why do atoms form bonds? To attain a noble gas configuration. How do atoms form bonds? By gaining, losing, or sharing electrons. Gain or loss of electrons.
Lecture 6 nitrogen and ozone photochemistry Regions of Light Absorption of Solar Radiation.
(e: the flame) / increasing O 2 /i.e.: / exothermic reactions: / energy / products / reaction path.
n = 1 n = 2 n = 3 :::: E n = 1 n = 2 n = 3 :::: E A A - B A(n=1) +B A(n=2) + B A(n=3) + B A(n=1) A(n=2) A(n=3) r AB.
The iron content of runoff from a banana ranch is a necessary analytical parameter to analyze. A 25.0mL sample of the runoff was acidified with HNO3 and.
The flames of Romance The flames of Romance Candlelight and Chemistry Molecular spectroscopy and reaction dynamics Arnar Hafliðason April 10 th 2015.
Mass Spectrometry Introduction:
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
PY3P05 Lecture 14: Molecular structure oRotational transitions oVibrational transitions oElectronic transitions.
P461 - Molecules 21 MOLECULAR ENERGY LEVELS Have Schrod. Eq. For H 2 (same ideas for more complicated). For proton and electron 1,2 real solution: numeric.
METO 621 LESSON 7. Vibrating Rotator If there were no interaction between the rotation and vibration, then the total energy of a quantum state would be.
Absorption and Emission Spectrum
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
Titrings- bylgju- föll; Líkindaföll/ Vibrational wavefunctions and probability functions: Bylgjuf.
 Litrófsstuðlar efna eru: Efni / sameindir B 1) D 1) CH OH E-4 CO NO E-6 1)
Rotational and Vibrational Spectra
Spectroscopy 1: Rotational and Vibrational Spectra CHAPTER 13.
Microwave Spectroscopy II
METO 637 LESSON 3. Photochemical Change A quantum of radiative energy is called a photon, and is given the symbol h Hence in a chemical equation we.
Lecture 3 INFRARED SPECTROMETRY
Time out—states and transitions Spectroscopy—transitions between energy states of a molecule excited by absorption or emission of a photon h =  E = E.
Photochemistry Lecture 1 Electronic excitation of atoms and molecules.
Microwave Spectroscopy Rotational Spectroscopy
Vibrational Spectroscopy
Vibrational and Rotational Spectroscopy
Carbon Dioxide (CO2) Methane (CH4) Ammonia (NH3) Nitrogen (N2)
1 University of Petra Faculty of Science & Arts Department of Chemistry Seminar I.R Spectroscopy By Firas Al-ouzeh Supervisor : Nuha I. Swidan Summer 2007.
1 Part III Physical Chemistry III Points and credit: Approximately 20% for quiz & homework 80% final examination Note*Extra.
BCHM 313 – Physical Biochemistry
EÐL620M / Life in the Universe Life in the Universe Astrophysics – chemistry – Biology – earth-/planetary sciences Atoms - chemical bond Carbon chemical.
Electronic Spectroscopy
Revisit vibrational Spectroscopy
States and transitions
Lecture 5 Intermolecular electronic energy transfer
School of Mathematical and Physical Sciences PHYS1220 Sept Molecules Slide 1 Atomic Binding - Molecular Bonds Atoms are known to come together to.
ROTATIONAL SPECTROSCOPY
ATOMIC/MOLECULAR SPECTROSCOPY  Various spectroscopic techniques are used to elucidate molecular structures (eg. NMR), to study molecular vibrations (IR.
The iron content of runoff from a banana ranch is a necessary analytical parameter to analyze. A 25.0mL sample of the runoff was acidified with HNO3 and.
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
ELECTROMAGNETIC SPECTRUM. OUTER (VALENCE) ELECTRONS AND ATOMIC STRUCTURE U.V. and VISIBLEOuter Valence Electrons in Atoms & Molecules Give Rise to Atomic.
1 Spectroscopy  Atomic emission spectra  UV/Vis spectra  Infrared (IR)
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
Why do atoms form bonds? To attain a noble gas configuration.
CHM 321:PHYSICAL CHEMISTRY II SPECTROSCOPY. WHAT IS SPECTROSCOPY? ORIGINATED FROM THE STUDY OF VISSIBLE LIGHT DISPERSED ACCORDING TO WAVELENGTH OR INTERACTION.
Spectroscopy 2: Electronic Transitions CHAPTER 14.
Rotation and vibration spectra. Rotational States Molecular spectroscopy: We can learn about molecules by studying how molecules absorb, emit, and scatter.
Chapter 8. Molecular Motion and Spectroscopy
MOLECULAR SPECTROSCOPY
Chemical Bonds Chemical Bond; an electrostatic force of attraction that holds atoms together so they act as a unit. This attractive forces results from.
RAMAN SPECTROSCOPY THREE EFFECTS OF RADIATION OF LIGHT ON MOLECULES CAN OCCUR. (i) RADIATION OF LIGHT ON TO MOLECULES, SOME OF THE LIGHT WILL BE REFLECTED.
Molecular Spectroscopy
Spectroscopy Microwave (Rotational) Infrared (Vibrational)
Molecular Spectroscopy
Ultrafast Spectroscopy
CHAPTER 9 Molecules Rotations Spectra Complex planar molecules
Physical Chemistry IV The Use of Statistical Thermodynamics
CHAPTER 9 Molecules Rotations Spectra Complex planar molecules
The absorption spectrum of chlorophyll
شيمی تجزيه دستگاهی Instrumental Analysis, Second edition, Gary D.Christian and James E.O , Reily درس شيمی تجزيه دستگاهی ـ 3 واحد ـ رشته شيمی و شيمی.
Diatomic molecules
MOLECULES BONDS Ionic: closed shell (+) or open shell (-)
Raman Spectroscopy A) Introduction IR Raman
Spectroscopy a laboratory method of analyzing matter using electromagnetic radiation.
Line Spectra and the Bohr Model
Rigid Diatomic molecule
m1 VIBRATIONAL THEORY p.55 bonds ~ springs E = ½ kx2 m2 x is + or -
J=0 J=1 J=2 J=3 J=4 J=5 E(J) E(J) vex með J E(J) = BJ(J+1)
How do I get experimental information on bond lengths in simple
Presentation transcript:

6.  Molecular spectroscopy / Litrófsgreining sameinda; m-wave-, IR- and UV/Vis -spectra regions

6.1   Term symbols and selection rules /   Ástandstákn og valreglur

Atoms Molecules (AB) Orbital Bond axis angular momenta spin angular Total electronic angular momenta

Atoms Molecules (AB) e.g.: Orbital angular momenta Bond axis Ex amples spin angular momenta Total electronic angular momenta e.g.: Ex amples 1/2

Selection Rules

U og g u og g ástönd sameinda:

state

LW e.g: common

6.  Molecular spectroscopy / Litrófsgreining sameinda; m-wave-, IR- and UV/Vis -spectra regions

E E : : A rAB A(n=3) A(n=3) + B n = 3 n = 3 A(n=2) A(n=2) + B n = 2

A A-B E(n) n ¥ : : E(v) E(J) n=3 : n=2 E(n) : n=1 E(n)

A A-B E(n) n ¥ : E(v) E(J) n=3 n=2 E(n) n=1 E(n)

A A-B E(n) n ¥ : E(v) E(J) n=3 n=2 E(n) n=1 E(n)

A A-B E(n) n ¥ : E(v) E(J) n=3 n=2 E(n) n=1 E(n)

Energy UV/Vis region

Energy UV/Vis region

6.  Molecular spectroscopy / Litrófsgreining sameinda; 6.1 m-wave- spectra regions

rotational energy levels and transitions mwave spectrum vs. rotational energy levels and transitions J E/ energy D = 2BJ J=4 J-1 Spacing between peaks= 2BJ – 2B(J-1) = 2B D = 2B(J-1) J=3 J=2 J=0 General: J-1 -> J E(J) = BJ(J+1) Example 3 -> 4 2B Abs. mwave spectrum: 2BJ

Angular momentum Moment of Inertia

Hverfitregða Sameinda/ Moments of inertia

Angular momentum Moment of Inertia

Deviation from rigid rotar behaviour: (peaks) (Spacing between Peaks)

Polyatomic molecules

Polyatomic molecules For linear molecules

Spherical symmetric molecules Additional selection rule: DK = 0 : z Symmetric top molecules Additional selection rule: DK = 0 : Similar spectra structure

z Jy Jx Jz N H J y x J = Jx + Jy + Jz J2 = Jx2 + Jy2 +Jz2

z Iz= I|| N H y Iy= I^ x Ix= I^ Ix= Iy = I^

z H y x N E = Ex + Ey + Ez E = Jx2/2Ix + Jy2/2Iy + Jz2/2Iz E = Jx2/2I^ + Jy2/2I^ + Jz2/2I|| E = Jx2/2I^ + Jy2/2I^ + Jz2/2I^ + Jz2/2I|| - Jz2/2I^ N H y x E = J2/2I^ + Jz2/2I|| - Jz2/2I^ E = B´J2 + A´Jz2 – B´Jz2 E = B´J2 + (A´ – B´)Jz2 E = B(J(J+1)) + (A – B)K2

Spectra structure/ Útlit rófa

Simulated rotational spectrum of 12C16O at 50 K. http://www.galaxyzooforum.org/index.php?topic=279339.0

Simulated rotational spectrum of 12C16O at 1350 K. http://www.galaxyzooforum.org/index.php?topic=279339.0

Perchloryl Fluoride, FClO3 http://www.astro.uni-koeln.de/site/vorhersagen/pickett/beispiele/FClO3/

Örbylgjulitrófsgreining Fjölatóma sameinda: Kúlu-og top-samhv. Örbylgjulitrófsgreining Fjölatóma sameinda:

http://www. aanda. org/articles/aa/full/2006/43/aa5777-06/aa5777-06 http://www.aanda.org/articles/aa/full/2006/43/aa5777-06/aa5777-06.fig.html

Information derived from mwave spectra:

Örbylgjulitróf efnanna AB = CH, OH, CO og NO, í geimryki: EEB Örbylgjulitróf efnanna AB = CH, OH, CO og NO, í geimryki: Tegunda- og hitagreiningar Ákvarða AB, T Litrófsstuðlar efna eru: Efni / sameindir B 1) D 1) CH 14.46 0.00145 OH 18.91 19.4E-4 CO 1.931 0.00000636 NO 1.672 0.54E-6 1) http://webbook.nist.gov/chemistry/form-ser.html.en-us.en

Örbylgjulitróf efnanna AB = CH, OH, CO og NO, í geimryki: EE4 Örbylgjulitróf efnanna AB = CH, OH, CO og NO, í geimryki: Tegunda- og hitagreiningar Ákvarða AB, T Litrófsstuðlar efna eru: Efni / sameindir B 1) D 1) CH 14.46 0.00145 OH 18.91 19.4E-4 CO 1.931 0.00000636 NO 1.672 0.54E-6 1) http://webbook.nist.gov/chemistry/form-ser.html.en-us.en

OH

OH

OH 150

6.  Molecular spectroscopy / Litrófsgreining sameinda; 6.3 IR- spectra regions

Útlit rófa vs Upplausn / Spectra structures vs. resolution: Útl.rófa(1) Útlit rófa vs Upplausn / Spectra structures vs. resolution:

Skammtaþrep efnatengja / quantum levels: Titr.þrep Skammtaþrep efnatengja / quantum levels: Snúnings-og titringsþrep/ rotational and vibrational levels: Titringsþrep / vibrational levels:

Útlit IR rófa / IR spectral structure Útl.rófa(2) Tilurð IR rófa / Energy transitions: Útlit IR rófa / IR spectral structure

HCl: H35Cl/H37Cl; IR róf/spectra (H.Í.):

HCl(2)

IR róf línulegra sameindir / IR spectra for linear molecules: H-C=C-H: H-C=N:

IR róf topsamhverfra sameinda / IR spectra for symmetric top molecules: CH3I:

6.  Molecular spectroscopy / Litrófsgreining sameinda; 6.4 UV/Vis -spectra regions

A A-B E(n) n ¥ : : E(v) E(J) n=3 : n=2 E(n) : n=1 E(n)

What is hidden in the flame? Flame / Introduction a. Molecular brake down b. Thermodynamics c. Emission II. Emission spectrum a. Cause of emission b. Emitters(?) c. Information derived from spectra analysis(?)

(e: the flame) / increasing O2

/i.e.: soot https://www.linkedin.com/pulse/black-soot-port-harcourt-rivers-state-nigeria-tamuno-esq-s-j-d-?articleId=8734102024765501037

C60 C70 http://blog.zacharyabel.com/tag/fullerenes/ http://depositphotos.com/12083166/stock-photo-fullerene-c70-molecular-structure.html

/ exothermic reactions: / energy / energy / products / reaction path

/energy released /as /kinetic energy /increasing temperature /light energy /how?

/NB: /products /reactive radicals are formed /molecular fragments

=> Increasing temperature / excess kinetic energy: / excess vibrational energy / excess rotational energy / excess translational energy

/- potential energy = electron energy loss /energy transfer /emission

/energy transfer: /emission following electron transfer: /electron to kinetic energy transfer: / II. The flame spectrum Flame rich in oxygen => blue coloured:

/inlet slit /PMT /comp. /Mono- chromator / gas burner

Continuous radiation Samfellt ljós Na H Hg Cu Lífrænt efni/ organic compound

/ “outer flame” / “inner flame” / spectrum / “inner flame”

/ “outer flame” / “inner flame” / “outer flame”

/ “inner flame”

/ more detail: / i.e.:

Chemiluminescence / Hvarfljómun Energy Path or / Chemiluminescence Analogy: Fluorescence

Chemiluminescenec / Hvarfljómun Energy Path or / Chemiluminescence Example / Flame:

Chemiluminescenec / Hvarfljómun Energy Path or / Chemiluminescence Example / Excimer laser processes:

photochemistry example: Ljósefnafræði ; Dæmi / photochemistry example: Cl H Xe

photochemistry example: Ljósefnafræði ; Dæmi / photochemistry example: . Cl H . Xe .

photochemistry example: Ljósefnafræði ; Dæmi / photochemistry example: Xe Cl H

photochemistry example: Ljósefnafræði ; Dæmi / photochemistry example: + - Cl Xe H

photochemistry example: Ljósefnafræði ; Dæmi / photochemistry example: Xe Cl H

CO2 and Excimer LASERs

Chemiluminescenec / Hvarfljómun Energy Path or / Chemiluminescence Example / Lucifer: Lucifer Luciferase E

http://emmybella.wordpress.com/production-of-light/

Firefly Luciferase Catalyzed Rxn Yellow-green light λmax = 560 nm (Figure 2) Citation 2

ATP + H2O – ADP + Pi ATP: Pi Many resonance figures; ATP/ADP ATP + H2O – ADP + Pi Repulsion forces; instability High energy state Pi Many resonance figures; stability; low energy state

2 H2O2 → O2 + 2 H2O Fe+ http://en.wikipedia.org/wiki/Luminol

http://en.wikipedia.org/wiki/Luminol http://science.howstuffworks.com/luminol1.htm

Pre- dissoc- iation Predissociation ? Emission spectrum Distorted:

Ljósrof:

Links to spectra simulation programs: PGOPHER IGOR m-wave m-róf 1.03; IGOR file IR PGOPHER  "HCl/DCl 1.04; IGOR file" UV/VIS (rot. Structure) UV-róf 2 /ROT 1 UV/VIS; FCF (vibr. Structure) Bound -> Bound 2.1 /FCF 1