IMCS, Rutgers University University California Santa Cruz

Slides:



Advertisements
Similar presentations
GEMS Kick- off MPI -Hamburg CTM - IFS interfaces GEMS- GRG Review of meeting in January and more recent thoughts Johannes Flemming.
Advertisements

Introduction to Data Assimilation NCEO Data-assimilation training days 5-7 July 2010 Peter Jan van Leeuwen Data Assimilation Research Center (DARC) University.
Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.
Assimilation Algorithms: Tangent Linear and Adjoint models Yannick Trémolet ECMWF Data Assimilation Training Course March 2006.
The Inverse Regional Ocean Modeling System:
Forecasting Forecast Error
Characterization of Forecast Error using Singular Value Decomposition Andy Moore and Kevin Smith University of California Santa Cruz Hernan Arango Rutgers.
Assessing the Information Content and Impact of Observations on Ocean Circulation Estimates using 4D-Var Andy Moore Dept. of Ocean Sciences UC Santa Cruz.
Assimilation of Sea Surface Temperature into a Northwest Pacific Ocean Model using an Ensemble Kalman Filter B.-J. Choi Kunsan National University, Korea.
ROMS 4D-Var: Past, Present & Future Andy Moore UC Santa Cruz.
ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms COAWST Modeling System Training WHOI, Woods Hole, MA August 26, 2014 Hernan G. Arango.
Initialization Issues of Coupled Ocean-atmosphere Prediction System Climate and Environment System Research Center Seoul National University, Korea In-Sik.
Rutgers Ocean Modeling Group ROMS 4DVar data assimilation Mid-Atlantic Bight and Gulf of Maine John Wilkin with Julia Levin, Javier Zavala-Garay, Hernan.
Prediction of Ocean Circulation in the Gulf of Mexico and Caribbean Sea An application of the ROMS/TOMS Data Assimilation Models Hernan G. Arango (IMCS,
Ibrahim Hoteit KAUST, CSIM, May 2010 Should we be using Data Assimilation to Combine Seismic Imaging and Reservoir Modeling? Earth Sciences and Engineering.
Application of Satellite Data in the Data Assimilation Experiments off Oregon Peng Yu in collaboration with Alexander Kurapov, Gary Egbert, John S. Allen,
ROMS/TOMS Tangent Linear and Adjoint Models Andrew Moore, CU Hernan Arango, Rutgers U Arthur Miller, Bruce Cornuelle, Emanuele Di Lorenzo, Doug Neilson.
The ROMS TL and ADJ Models: Tools for Generalized Stability Analysis and Data Assimilation Hernan Arango, Rutgers U Emanuele Di Lorenzo, GIT Arthur Miller,
MARCOOS/ESPreSSO ROMS RU Coastal Ocean Modeling and Prediction group John Wilkin, Gordon Zhang, Julia Levin, Naomi Fleming, Javier Zavala-Garay, Hernan.
Advanced data assimilation methods with evolving forecast error covariance Four-dimensional variational analysis (4D-Var) Shu-Chih Yang (with EK)
Coastal Ocean Observation Lab John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean.
A Forecasting system for the Southern California Current Emanuele Di Lorenzo Arthur Miller Bruce Cornuelle Scripps Institution of Oceanography, UCSD.
1 NOAA’s National Climatic Data Center April 2005 Climate Observation Program Blended SST Analysis Changes and Implications for the Buoy Network 1.Plans.
4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango.
ROMS/TOMS TL and ADJ Models: Tools for Generalized Stability Analysis and Data Assimilation Andrew Moore, CU Hernan Arango, Rutgers U Arthur Miller, Bruce.
The Inverse Regional Ocean Modeling System: Development and Application to Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E., Moore, A., H.
Andy Moore, UCSC Hernan Arango, Rutgers Gregoire Broquet, CNRS Chris Edwards & Milena Veneziani, UCSC Brian Powell, U Hawaii Jim Doyle, NRL Monterey Dave.
NOPP Project: Boundary conditions, data assimilation, and predictability in coastal ocean models OSU: R. M. Samelson (lead PI), J. S. Allen, G. D. Egbert,
“ New Ocean Circulation Patterns from Combined Drifter and Satellite Data ” Peter Niiler Scripps Institution of Oceanography with original material from.
Ocean Data Variational Assimilation with OPA: Ongoing developments with OPAVAR and implementation plan for NEMOVAR Sophie RICCI, Anthony Weaver, Nicolas.
Weak and Strong Constraint 4DVAR in the R egional O cean M odeling S ystem ( ROMS ): Development and Applications Di Lorenzo, E. Georgia Institute of Technology.
TOPAZ operations, products, ongoing developments Laurent Bertino, Knut Arild Lisæter, Goran Zangana, NERSC OPNet meeting, Geilo, 6 th Nov
In collaboration with: J. S. Allen, G. D. Egbert, R. N. Miller and COAST investigators P. M. Kosro, M. D. Levine, T. Boyd, J. A. Barth, J. Moum, et al.
Sophie RICCI CALTECH/JPL Post-doc Advisor : Ichiro Fukumori The diabatic errors in the formulation of the data assimilation Kalman Filter/Smoother system.
11 th JCSDA Science Workshop on Satellite Data Assimilation Latest Developments on the Assimilation of Cloud-Affected Satellite Observations Tom Auligné.
ROMS 4D-Var: The Complete Story Andy Moore Ocean Sciences Department University of California Santa Cruz & Hernan Arango IMCS, Rutgers University.
The I nverse R egional O cean M odeling S ystem Development and Application to Variational Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E.
ROSA – ROSSA Validation results R. Notarpietro, G. Perona, M. Cucca
Modeling the biological response to the eddy-resolved circulation in the California Current Arthur J. Miller SIO, La Jolla, CA John R. Moisan NASA.
Ensemble-based Assimilation of HF-Radar Surface Currents in a West Florida Shelf ROMS Nested into HYCOM and filtering of spurious surface gravity waves.
6/29/2010 Wan-Shu Wu1 GSI Tutorial 2010 Background and Observation Error Estimation and Tuning.
The OR-WA coastal ocean forecast system Initial hindcast assimilation tests 1 Goals for the COMT project: -DA in presence of the Columbia River -Develop.
ROMS/TOMS European Workshop Alcala de Henares, Spain, November 7, 2006 ROMS Framework and Algorithms Andrew M. Moore UCSC Emanuele Di Lorenzo Georgia Tech.
© Crown copyright Met Office The EN4 dataset of quality controlled ocean temperature and salinity profiles and monthly objective analyses Simon Good.
Weak Constraint 4DVAR in the R egional O cean M odeling S ystem ( ROMS ): Development and application for a baroclinic coastal upwelling system Di Lorenzo,
July, 2009 WRF-Var Tutorial Syed RH Rizvi 0 WRFDA Background Error Estimation Syed RH Rizvi National Center For Atmospheric Research NCAR/ESSL/MMM, Boulder,
2005 ROMS/TOMS Workshop Scripps Institution of Oceanography La Jolla, CA, October 25, D Variational Data Assimilation Drivers Hernan G. Arango IMCS,
Predictability of Mesoscale Variability in the East Australian Current given Strong Constraint Data Assimilation John Wilkin Javier Zavala-Garay and Hernan.
Weak and Strong Constraint 4D variational data assimilation: Methods and Applications Di Lorenzo, E. Georgia Institute of Technology Arango, H. Rutgers.
The I nverse R egional O cean M odeling S ystem Development and Application to Variational Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E.
Slide 1 NEMOVAR-LEFE Workshop 22/ Slide 1 Current status of NEMOVAR Kristian Mogensen.
Observations and Ocean State Estimation: Impact, Sensitivity and Predictability Andy Moore University of California Santa Cruz Hernan Arango Rutgers University.
Ocean Data Assimilation for SI Prediction at NCEP David Behringer, NCEP/EMC Diane Stokes, NCEP/EMC Sudhir Nadiga, NCEP/EMC Wanqiu Wang, NCEP/EMC US GODAE.
LOCAL ENSEMBLE KALMAN FILTER (LETKF) ANALYSIS OF LOOP CURRENT & EDDY IN THE GULF OF MEXICO Fanghua Xu 1, Leo Oey 1, Yasumasa Miyazawa 2, Peter Hamilton.
Predictability of Mesoscale Variability in the East Australia Current given Strong Constraint Data Assimilation Hernan G. Arango IMCS, Rutgers John L.
1 Data assimilation developments for NEMO  A working group was created at the 2006 Developers Meeting with the objective of standardizing for NEMO certain.
1 Modeling and Forecasting for SCCOOS (Southern California Coastal Ocean Observing System) Yi Chao 1, 2 & Jim McWilliams 2 1 Jet Propulsion Laboratory,
1 MODIS winds assimilation experiments and impact studies to date at the Met Office Howard Berger, Mary Forsythe, Met Office, Bracknell/Exeter, UK UW-CIMSS.
Hybrid Data Assimilation
Bruce Cornuelle, Josh Willis, Dean Roemmich
ROMS Framework: Kernel
The Server-Side with F-TDS
Y. Xue1, C. Wen1, X. Yang2 , D. Behringer1, A. Kumar1,
Adjoint Sensitivity Analysis of the California Current Circulation and Ecosystem using the Regional Ocean Modeling System (ROMS) Andy Moore, Emanuele.
FSOI adapted for used with 4D-EnVar
Spatial interpolation
Comparison of different combinations of ensemble-based and variational data assimilation approaches for deterministic NWP Mark Buehner Data Assimilation.
Andy Moore1, Hernan Arango2 & Chris Edwards1
Adjoint Sensitivity Studies on the US East Coast
Sarah Dance DARC/University of Reading
Presentation transcript:

IMCS, Rutgers University University California Santa Cruz ROMS 4-Dimensional Variational (4D-Var) Observation Operator Hernan G. Arango IMCS, Rutgers University Andrew M. Moore University California Santa Cruz Boulder, CO NCAR Mesa Lab April 25, 2016

ROMS 4D-Var Team Andy Moore – UC Santa Cruz Hernan Arango – Rutgers University Art Miller – Scripps Bruce Cornuelle – Scripps Emanuelle Di Lorenzo – GA Tech Brian Powell – University of Hawaii Javier Zavala-Garay - Rutgers University Julia Levin - Rutgers University John Wilkin - Rutgers University Chris Edwards – UC Santa Cruz Hajoon Song – MIT Anthony Weaver – CERFACS Selime Gürol – CERFACS/ECMWF Polly Smith – University of Reading Emilie Neveu – Savoie University

ROMS 4D-Var System Incremental (linearized about a prior) (Courtier et al., 1994) Primal (model grid space search) and dual (observation space search) formulations (Courtier 1997) Primal: Incremental 4D-Var (I4D-Var) Dual: Physical-space Statistical Analysis System, PSAS (4D-PSAS) (Da Silva et al, 1995); (4D-PSAS)T Dual: Indirect Representer (R4D-Var) (Egbert et al, 1994); (R4D-Var)T Strong and weak (dual only) constraint Preconditioned, Lanczos formulation of conjugate gradient (Lorenc, 2003; Tshimanga et al., 2008; Fisher, 1997) Second-level preconditioning for multiple outer-loops Diffusion operator mode for prior covariances (Derber and Bouttier, 1999; Weaver and Courtier, 2001) Multivariate balance operator for prior covariance (Weaver et al., 2001) Background quality control (Andersson and Järvinen, 1999) Physical and ecosystem components Parallel (distributed-memory, MPI) Publications: Moore et al., 2011a, b, c (Progress in Oceanography) WikiROMS Tutorials: https://www.myroms.org/wiki/index.php/4DVar_Tutorial_Introduction

ROMS 4D-Var Data Assimilation Systems I4D-Var primal formulation model grid space search traditional NWP lots of experience strong constraint only (phasing out) R4D-Var dual formulation observations space search formally most correct mathematically rigorous problems with high Rossby numbers strong/weak constraint and 4D-PSAS dual formulation observation space search an excellent compromise more robust for high Rossby numbers formally suboptimal strong/weak constraint and (4D-Var)T

I4D-Var Algorithm (Moore et al., 2011a) We never compute these matrices but operate on them by using the tangent linear model (G) and the adjoint model (G^T).

R4D-Var Algorithm (Moore et al., 2011a)

4D-PSAS Algorithm (Moore et al., 2011a)

ROMS 4D-VAR Obs ROMS 4D-Var Posterior Ensemble fb, Bf 4D-Var y, R Priors & Hypotheses ROMS Obs y, R fb, Bf bb, Bb xb, B h, Q Posterior 4D-Var dof Adjoint 4D-Var impact Hypothesis Tests Uncertainty Analysis error Term balance, eigenmodes Forecast Clipped Analyses Ensemble (SV, SO)

I4D-Var Tutorial Wiki Page

4D-Var Observation Operator

4D-Var Observations NetCDF File During 4D-Var, the input observations data are used in the following ROMS routines: Utility/obs_initial.F Utility/obs_read.F Utility/obs_write.F Utility/obs_scale.F Utility/obs_depth.F Utility/extract_obs.F Adjoint/ad_extract_obs.F Adjoint/ad_htobs.F Adjoint/ad_misfit.F

Observation Data Sources Sea Surface Temperature NOAA PFEG Coastwash OpenDAP (various spatial and temporal resolutions). It is a blended product including microwave AMSR-E, AVHRR, MODIS, and GOES satellites (load_sst_pfeg.m). http://las.pfeg.noaa.gov/oceanWatch/oceanwatch.php Sea Surface Height Gridded altimetry data from AVISO (load_ssh_aviso.m). Username and password required. http://www.aviso.oceanobs.com/ Hydrographic data UK Met Office observations datasets (EN3, EN4) http://hadobs.metoffice.com/en3

Metadata Dimensions: survey Number of unique data surveys state_variable Number of ROMS state variables datum Observations counter, unlimited dimension Variables: Nobs(survey) Number of observations per survey survey_time(survey) Survey time (days) obs_variance(state_variable) global time and space observation variance obs_type(datum) State variable ID associated with observation obs_provenance(datum) observation origin obs_time(datum) Time of observation (days) obs_lon(datum) Longitude of observation (degrees_east) obs_lat(datum) Latitude of observation (degrees_north) obs_depth(datum) Depth of observation (meters or level) obs_Xgrid(datum) X-grid observation location (nondimensional) obs_Ygrid(datum) Y-grid observation location (nondimensional) obs_Zgrid(datum) Z-grid observation location (nondimensional) obs_error(datum) Observation error, assigned weight obs_value(datum) Observation value

Observations NetCDF Variable ID ζ 1 u 2 v 3 4 5 temp 6 salt 7 2 1 3 5 dimensions: survey = 13 ; state_variable = 7 ; datum = 6815 variables: int spherical ; spherical:long_name = "grid type logical switch" ; spherical:flag_values = "0, 1" ; spherical:flag_meanings = "Cartesian spherical" ; int Nobs(survey) ; Nobs:long_name = "number of observations with the same survey time" ; double survey_time(survey) ; survey_time:long_name = "survey time" ; survey_time:units = "days since 1968-05-23 00:00:00 GMT" ; survey_time:calendar = "gregorian" ; double obs_variance(state_variable) ; obs_variance:long_name = "global time and space observation variance" ; int obs_type(datum) ; obs_type:long_name = "model state variable associated with observation" ; obs_type:flag_values = 1, 2, 3, 4, 5, 6, 7 ; obs_type:flag_meanings = "zeta ubar vbar u v temperature salinity" ; int obs_provenance(datum) ; obs_provenance:long_name = "observation origin" ; obs_provenance:flag_values = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ; obs_provenance:flag_meanings = "gridded_AVISO_SLA ..." ; double obs_time(datum) ; obs_time:long_name = "time of observation" ; obs_time:units = "days since 1968-05-23 00:00:00 GMT" ; obs_time:calendar = "gregorian" ; double obs_lon(datum) ; obs_lon:long_name = "observation longitude" ; obs_lon:units = "degrees_east" ; obs_lon:standard_name = "longitude" ; double obs_lat(datum) ; obs_lat:long_name = "observation latitude" ; obs_lat:units = "degrees_north" ; obs_lat:standard_name = "latitude" ; double obs_depth(datum) ; obs_depth:long_name = "depth of observation" ; obs_depth:negative = "downwards" ; double obs_Xgrid(datum) ; obs_Xgrid:long_name = "x-grid observation location" ; double obs_Ygrid(datum) ; obs_Ygrid:long_name = "y-grid observation location" ; double obs_Zgrid(datum) ; obs_Zgrid:long_name = "z-grid observation location" ; double obs_error(datum) ; obs_error:long_name = "observation error covariance" ; double obs_value(datum) ; obs_value:long_name = "observation value" ; Variable ID ζ 1 u 2 v 3 4 5 temp 6 salt 7 datum = UNLIMITED ; // (6815 currently) 2 1 3 5 4 8 6 7 (i1,j1,k1) (i2,j2,k2)

Global Attributes variables: . . . int obs_provenance(datum) ; obs_provenance:long_name = "observation origin" ; obs_provenance:flag_values = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ; obs_provenance:flag_meanings = "gridded_AVISO_SLA blended_SST XBT_Met_Office CTD_temperature_Met_Office CTD_salinity_Met_Office ARGO_temperature_Met_Office ARGO_salinity_Met_Office CTD_temperature_CalCOFI CTD_salinity_CalCOFI CTD_temperature_GLOBEC CTD_salinity_GLOBEC" ; // global attributes: :type = "ROMS observations" ; :title = "California Current System, 1/3 degree resolution (WC13)" ; :Conventions = "CF-1.4" ; :state_variables = "\n", "1: free-surface (m) \n", "2: vertically integrated u-momentum component (m/s) \n", "3: vertically integrated v-momentum component (m/s) \n", "4: u-momentum component (m/s) \n", "5: v-momentum component (m/s) \n", "6: potential temperature (Celsius) \n", "7: salinity (nondimensional)" ; :obs_provenance = "\n", " 1: gridded AVISO sea level anomaly \n", " 2: blended satellite SST \n", " 3: XBT temperature from Met Office \n", " 4: CTD temperature from Met Office \n", " 5: CTD salinity from Met Office \n", " 6: ARGO floats temperature from Met Office \n", " 7: ARGO floats salinity from Met Office \n", " 8: CTD temperature from CalCOFI \n", " 9: CTD salinity from CalCOFI \n", "10: CTD temperature from GLOBEC \n", "11: CTD salinity from GLOBEC" ; :variance_units = "squared state variable units" ; :obs_sources = "\n", "http://opendap.aviso.oceanobs.com/thredds/dodsC \n", "http://hadobs.metoffice.com/en3" ; :history = "4D-Var observations, Wednesday - July 7, 2010 - 12:20:37.2629 AM" ;

Longitude and Latitude Locations (Optional) The obs_lon and obs_lat values are only necessary to compute the fractional grid locations (obs_Xgrid, obs_Ygrid) during pre-processing using obs_ijpos.m The obs_lon and obs_lat are not used directly in ROMS when running the 4D-Var algorithms for efficiency and because of the complexity of curvilinear grids. The fractional grid locations obs_Xgrid and obs_Ygrid are used instead. However, they are useful during post-processing and plotting results into maps or when changing application grid. The size of the observation NetCDF can be an issue, it is smaller if obs_lon and obs_lat are omitted.

ROMS GRID Horizontal curvilinear orthogonal coordinates on an Arakawa C-grid. Terrain-following coordinates on a staggered vertical grid. Coarse-grained parallel tile partitions. Only distributed-memory (MPI) is possible in all the adjoint-based algorithms. Shared-memory (OpenMP) is not possible because of the way that the adjoint model is coded. In distributed-memory, we need the adjoint of the MPI exchanges between the tiles.

Staggered C-Grid, RHO-points

Vertical Terrain-following Coordinates Dubrovnik (Croatia) Vieste (Italy) Longitude Depth (m)

East-West MPI Communications Nonlinear With Respect To Tile R With Respect To Tile R Adjoint

North-South MPI Communications With Respect to Tile B Nonlinear Adjoint

Processing Compute observation’s fractional (, ) grid coordinates locations from its (obs_lon, obs_lat). Find how many unique survey times occur within the data set (survey dimension) Count observations available per survey (Nobs) and assign their times (survey_time) Sort the observation in ascending time order and observation type for efficiency Save a copy of the observation file Several matlab scripts to process observations

Matlab Scripts C_observations.m - Creates 4D-Var observation NetCDF file. d_observations.m - Driver to process 4D-Var observation NetCDF file. Obs_merge.m - Merges specified 4D-Var observation NetCDF files. obs_read.m - Reads observation NetCDF file and loads all data into a structure array. obs_write.m - Writes all observation data in structure array into an existing NetCDF file. inside.m - Checks if a point is strictly inside of the region defined by a polygon. This is an old Matlab function which is no longer supported. It is very useful in finding outliers in observations (inpolygon). obs_ijpos.m - Computes observation locations in ROMS fractional coordinates. It uses the deprecated inside.m Matlab function. super_obs.m - Checks the provided observation data (4D-Var NetCDF file or structure) and creates super observations if there is more than one datum of the same observation type per grid cell.

Matlab Scripts plot_super.m - Sample script to compute and plot super observations from specified 4D-Var observations NetCDF file. d_ssh_obs.m - Driver template to extract SSH observations for AVISO. It creates and writes an observation file. Then, it computes super observations and creates and writes a super observations NetCDF file. d_sst_obs.m - Driver template to extract SST observations from satellite data. It creates and writes an observation file. Then, it computes super observations and creates and writes a super observations NetCDF file. load_ssh_aviso.m - Extracts AVISO sea level anomaly for the specified region and period of interest from ROMS Grid file. load_sst_pfeg.m - Extracts satellite sea surface temperature for the specified region and period of interest from ROMS Grid file. The SST data is from the OpenDAP catalog maintained by NOAA PFEG Coastwatch in California. The resolution is 0.1 degree global 5-day average composite.

Matlab Observation Structure Observations data structure S: S.ncfile NetCDF file name (string) S.Nsurvey number of observations surveys S.Nstate number of state variables S.Ndatum total number of observations S.spherical spherical grid switch S.Nobs number of observations per survey S.survey_time time for each survey time S.variance global variance per state variable S.type state variable associated with observation S.time time for each observation S.depth depth of observation S.Xgrid observation fractional x-grid location S.Ygrid observation fractional y-grid location S.Zgrid observation fractional z-grid location S.error observation error S.value observation value

Matlab Observation Structure The following optional variables will be read if available: S.provenance observation origin S.lon observation longitude S.lat observation latitude The following variable attributes will be read if available: S.state_flag_values obs_type flag_values attribute S.state_flag_meanings obs_type flag_meanings attribute S.origin_flag_values obs_provenance flag_values attribute S.origin_flag_meanings obs_provenance flag_meaning attribute The following global attributes will be read if available: S.global_variables state_variables global attribute S.global_provenance obs_provenance global attribute S.global_sources obs_sources global attribute

Assumptions All scalar observations are assumed to be at RHO-points. All vector observations are assumed to be rotated to ROMS curvilinear grid, if applicable. Vector observations are always measured at the same location. All observation horizontal locations are assumed to be in fractional curvilinear grid coordinates. Vertical locations can be in fractional levels (1:N) or actual depths (negative values). Removal of tidal signal? Filtering of non-resolved processes?

Observation Operators Currently, all observations must be in terms of model state variables (same units): 2D configuration: zeta, ubar, vbar 3D configuration: zeta, u, v, T, S, … There is no time interpolation of the model solution at observation times: time - 0.5*dt < ObsTime < time + 0.5*dt There is no observation quality control (screening) inside ROMS, except ObsScale. No observation constraints are implemented (Satellite SST measurements)

Observation Interpolation Only spatial linear interpolation is coded. If land/sea masking, the interpolation coefficients are weighted by the mask. If shallower than z_r(:,:,N), observations are assigned to the surface level. If deeper than z_r(:,:,1), observations are rejected.

Recommendations Create a NetCDF file for each observation type. Use a processing program to meld NetCDF observation files (obs_merge.m). Keep a master copy of each observation file, in case you are running your application at different resolutions. Decimation of observations. Finite volume representation super observations (super_obs.m).

SST Observations (1/10 degree) Jan 1, 2004

SST Super Observations Jan 1, 2004

SSH Observations (AVISO) Jan 1, 2004

SSH Super Observations Jan 1, 2004