S. Dasgupta*, N.K. Mondal, D. Samuel, M.N. Saraf,

Slides:



Advertisements
Similar presentations
Cosmic Ray Test of INO RPC Stack M. Bhuyan 1, V.M. Datar 2, S.D. Kalmani 1, S.M. Lahamge 1, N.K. Mondal 1, P. Nagaraj 1, S. Pal 1, L.V. Reddy, A. Redij.
Advertisements

Plastic Scintillator Option for DB a simulation study by Maxim Gonchar, Yury Gornushkin and Dmitry Naumov JINR, Dubna, Russia Collaboration Meeting January.
Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
M. Bhuyan 1, V.M. Datar 2, S.D. Kalmani 1, S.M. Lahamge 1, S. Mohammed 3, N.K. Mondal 1, P. Nagaraj 1, A. Redij 1, D. Samuel 1, M.N. Saraf 1, B. Satyanarayana.
SKS Minus Detectors in detail Tohoku Univ. K.Shirotori.
The ATLAS B physics trigger
Segmented magnetised detectors Anselmo Cervera Villanueva Universidad de Valencia ISS meeting RAL (UK) 25/04/06 RAL (UK) 25/04/06.
ARNAB BANERJEE Variable Energy Cyclotron Centre, India.
1 G4MICE studies of PID transverse acceptance MICE video conference Rikard Sandström.
INDIA-BASED NEUTRINO OBSERVATORY (INO) STATUS REPORT Naba K Mondal Tata Institute of Fundamental Research Mumbai, India NUFACT Scoping Study Meeting at.
STATUS OF INDIA-BASED NEUTRINO OBSERVATORY (INO) Naba K Mondal Tata Institute of Fundamental Research Tata Institute of Fundamental Research Mumbai, India.
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
Results from development of Glass RPCs for INO detector
Development and study of Glass Resistive Plate Chambers Satyanarayana Bheesette Roll number: Supervisors Prof Raghava Varma, IIT Bombay Prof Naba.
Naba K Mondal, TIFR, Mumbai ICAL ( conceptual) INO Peak at Bodi West Hills Prototype ICAL at VECC 2mX2m RPC Test Stand at TIFR ASIC for RPC designed at.
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
1 Tianchi Zhao University of Washington Concept of an Active Absorber Calorimeter A Summary of LCRD 2006 Proposal A Calorimeter Based on Scintillator and.
KM3NeT IDM/TeVPA conference 23  28 June 2014, Amsterdam, the Netherlands Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino.
I have made the second half of the poster, first half which is made by tarak will have neutrino information. A patch between the two, telling why we do.
Apostolos Tsirigotis Simulation Studies of km3 Architectures KM3NeT Collaboration Meeting April 2007, Pylos, Greece The project is co-funded by the.
Construct two layers of hadron calorimeter and test Makoto Harada High Energy Physics Laboratory Faculty of Physics Department of Science Shinshu University.
Large Magnetic Calorimeters Anselmo Cervera Villanueva University of Geneva (Switzerland) in a Nufact Nufact04 (Osaka, 1/8/2004)
2 Atmospheric Neutrinos Atmospheric neutrino detector at Kolar Gold Field –1965.
India-based Neutrino Collaboration(INO), INDIA1 B.S.Acharya, Sudeshna Banerjee, P.N.Bhat, S.R.Dugad, P.Ghosh, K.S.Gothe, S.K.Gupta, S.D.Kalmani, N. Krishnan,
Barrel RPC Chamber consists of 2 double-gaps, each equipped with a common plane of 96 strips read-out by 6 front-end boards. The two double- gaps have.
Ronald Bruijn – 10 th APP Symposium Antares results and status Ronald Bruijn.
Impact parameter resolution study for ILC detector Tomoaki Fujikawa (Tohoku university) ACFA Workshop in Taipei Nov
March 02, Shahid Hussain for the ICECUBE collaboration University of Delaware, USA.
Status and first results of the KASCADE-Grande experiment
Status summary of RPC R&D for INO ICAL detector B.Satyanarayana, TIFR, Mumbai Satyajit Jena, IIT Bombay, Powai For INO Collaboration.
Detector Monte-Carlo ● Goal: Develop software tools to: – Model detector performance – Study background issues – Calculate event rates – Determine feasibility.
EAS Time Structures with ARGO-YBJ experiment 1 - INFN-CNAF, Bologna, Italy 2 - Università del Salento and INFN Lecce, Italy A.K Calabrese Melcarne 1, G.Marsella.
Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, May 25, 2004 Purpose:  Provide pion – muon separation (muon veto)
B.Satyanarayana Department of High Energy Physics Tata Institute of Fundamental Research Homi Bhabha Road, Colaba, Mumbai,
B.Satyanarayana (For INO collaboration) Department of High Energy Physics Tata Institute of Fundamental Research Homi Bhabha Road, Colaba, Mumbai, 400.
PMT measurements in Antares Oleg Kalekin on behalf of Antares collaboration VLVnT 2011 Erlangen
INSTR L.Shekhtman 1 Triple-GEM detectors for KEDR tagging system V.M.Aulchenko, A.V.Bobrov,A.E.Bondar, L.I.Shekhtman, E.V.Usov, V.N.Zhilich,
Naba K Mondal TIFR, Mumbai ICAL ( conceptual) INO Peak at Bodi West Hills Prototype ICAL at VECC 2mX2m RPC Test Stand at TIFR ASIC for RPC designed at.
Villa Olmo, Como October 2001F.Giordano1 SiTRD R & D The Silicon-TRD: Beam Test Results M.Brigida a, C.Favuzzi a, P.Fusco a, F.Gargano a, N.Giglietto.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
2008 European School of High-Energy Physics - Trest, Czech Republic - 19 August - 1st September Target Tracker Data Analysis In OPERA Experiment S. Dmitrievsky,
Neutrino oscillation & INO Angles (mixing) are very much different than in quark sector For neutrinos weak Eigen states may be different from mass eigen.
Satyanarayana Bheesette Tata Institute of Fundamental Research, Mumbai, INDIA (For INO Collaboration) INO: India-based Neutrino Observatory ICAL: (Magnetised)
KM3NeT Neutrino conference 2-7 June 2014, Boston, U.S.A. Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino telescope in.
R & D Status report on INO Naba K Mondal Tata Institute of Fundamental Research Tata Institute of Fundamental Research Mumbai, India.
SIMULATION STUDIES ON THE EFFECT OF SF 6 IN THE RPC GAS MIXTURE Mohammed Salim, Aligarh Muslim University, INDIA Presented by Satyanarayana Bheesette,
Operation, performance and upgrade of the CMS Resistive Plate Chamber system at LHC Marcello Abbrescia Physics Department - University of Bari & INFN,
India-Based Neutrino Observatory (INO)
India-Based Neutrino Observatory (INO)
Study on Surface Asperities
Bachir Bouhadef, Mauro Morganti, G. Terreni (KM3-Italy Collaboration)
An Experimental EXERCISE
GLAST LAT tracker signal simulation and trigger timing study
India-based Neutrino Observatory (INO)
Results from OPERA Pablo del Amo Sánchez for the OPERA collaboration
A LARGE ATMOSPHERIC NEUTRINO DETECTOR USING RESISTIVE PLATE CHAMBERS
HE Calorimeter Upgrade Studies
K. Sedlak, A. Stoykov, R. Scheuermann
5% The CMS all silicon tracker simulation
INO-ICAL trigger system : A tale of its evolution
Quarkonium production in p-p and A-A collisions: ALICE status report
Parasitic Run Physics Simulations
The KL reconstruction for the Belle experiment at KEK B-factory
Geant4 in HARP V.Ivanchenko For the HARP Collaboration
11th Pisa meeting on advanced detectors
Forward-Backward Asymmetry Study in
Oscillation Physics at INO
MUC simulation and reconstruction
Study of timing properties of single gap high-resistive bakelite RPC
Update on POLA-01 measurements in Catania
Presentation transcript:

Proposed Trigger Scheme for the ICAL Detector of India-based Neutrino Observatory S. Dasgupta*, N.K. Mondal, D. Samuel, M.N. Saraf, B. Satyanarayana, S.S. Upadhya Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005, India *Corresponding author (sudeshnadasgupta@tifr.res.in)

Outline RPC2012, INFN Frascati, Italy 2/9/2012 1 The ICAL Detector 2 Proposed Trigger Scheme 3 Chance Coincidence Rates 4 Simulation Framework & Results RPC2012, INFN Frascati, Italy 2/9/2012

The ICAL Detector Modules 3 Module dimension 16 m x 16 m x 14.5 m Detector dimension 48 m x 16 m x 14.5 m Iron layers 151 Iron plate thickness 56 mm RPC layers 150 Gap for RPC units 40 mm RPC dimension 1840 mm x 1915 mm x 20 mm RPC units/ layer/ module 64 RPC units/ module 9600 Total RPC units 28,800 Magnetic field 1.3 Tesla RPC2012, INFN Frascati, Italy 2/9/2012

Neutrino Interactions in ICAL Neutrino interactions in iron produce muon and/ or hadrons. Muon produces long track inside the detector, traversing many layers. Hadrons give rise to showers, confined within a few layers. The neutrino energy can be estimated from the muon momentum and the hit distribution of hadrons. RPC2012, INFN Frascati, Italy 2/9/2012

Design Goals of Trigger System High detection efficiency Admissible chance trigger rate Feasibility of hardware implementation RPC2012, INFN Frascati, Italy 2/9/2012

Trigger Criteria RPC2012, INFN Frascati, Italy 2/9/2012

The Trigger Pyramid RPC2012, INFN Frascati, Italy 2/9/2012

Segmentation RPC2012, INFN Frascati, Italy 2/9/2012

Hierarchy of Trigger Scheme Level0 Signals T01 = S00 + S08 + S16 + S24 + S32 + S40 + S48 + S56 T02 = S01 + S09 + S17 + S25 + S33 + S41 + S49 + S57 T08 = S07 + S15 + S23 + S31 + S39 + S47 + S55 + S63 Level1 Signals T11= T01+ T02+…+T08 T12= T01.T02+T02.T03+…+T08.T01 T13= T01.T02.T03+T02.T03.T04+…+T08.T01.T02 T14= T01.T02.T03.T04+…+T08.T01.T02.T03 Level2 Signals T1SM = Σ T1M T2SMxN/P Level3 Signals T3S = Σ T2SMxN/P Global Trigger GTX = Σ T3SX , GTY = ΣT3SY GT = GTX OR GTY .. RPC2012, INFN Frascati, Italy 2/9/2012

RPC2012, INFN Frascati, Italy 2/9/2012

Chance Coincidence Rates Average noise rate/ RPC strip (200 cm x 3 cm) Coincidence Window (ns) Surface Rate (Hz) Underground Rate (Hz) 200 10* 100 HS VS Segment Dimension Total Segments Trigger Criteria Set 1 Trigger Criteria Set 2 Surface Rate (Hz) Underground Rate (Hz) 4 (2x2) 10 4 m x 4 m x 1 m 735 87 2.7 x 10-5 1.4 x 104 8.5 x 10-2 20 4 m x 4 m x 2 m 392 40 4 m x 4 m x 4 m 196 9 (3x3) 30 6 m x 6 m x 3 m 180 3.7 x 103 1.1 x 10-3 2.6 x 105 1.6 6 m x 6 m x 4 m 144 60 6 m x 6 m x 6 m 108 16 (4x4) 8 m x 8 m x 4 m 100 4.5 x 104 1.4 x 10-2 1.8 x 106 11.1 8 m x 8 m x 6 m 75 80 8 m x 8 m x 8 m 50 RPC2012, INFN Frascati, Italy 2/9/2012

Analysis Input RPC2012, INFN Frascati, Italy 2/9/2012

Algorithm RPC2012, INFN Frascati, Italy 2/9/2012

Trigger Efficiency Vs. Event Parameters µ Events Trigger efficiency increases with increase in energy of the incident particle. CC ν Events Trigger efficiency decreases with increase in the angle of incidence. RPC2012, INFN Frascati, Italy 2/9/2012

Trigger Efficiency Vs. Trigger Parameters (M, N) µ Events Trigger efficiency is dominated by the 1- Fold and the 2-Fold criteria for muon events. CC ν Events Trigger criteria with M>2 is significant for neutrino events compared to muon events. RPC2012, INFN Frascati, Italy 2/9/2012

Trigger Efficiency Vs. Trigger Parameters (P, HSX, HSY, VS) µ Events RPC2012, INFN Frascati, Italy 2/9/2012

Summary An architecture for the trigger scheme of the ICAL detector has been developed. Associated chance trigger rates are found to be acceptable for an optimal combination of the trigger parameters. The simulation results provide a good assessment of the detection efficiency of the trigger scheme. The nature of variation of trigger efficiency as a function of different trigger parameters are also understood. Validation of the scheme motivates to proceed towards the subsequent implementation phase. RPC2012, INFN Frascati, Italy 2/9/2012

References INO Project Report, vol. 1, (2006). M. Bhuyan, et al., Development of 2 m x 2 m size glass RPCs for INO, doi:10.1016/j.nima.2010.09.087, Nucl. Instr. and Meth. A, (2010). C. Grupen and B. Shwartz, Particle detectors, 2nd Edition, Cambridge University Press, (2008). A. Garfagnini, et al., The OPERA muon spectrometers, Nucl. Instr. and Meth. A 572 (1):177-180, (2007) J. Allison, et al., Geant4-a simulation toolkit, Nucl. Instr. and Meth. A, 506(3):250-303, (2003). D. Casper, et al., The nuance Neutrino Physics Simulation and the Future, Nucl. Phys. Proc. Suppl., 112:161-170, (2002). RPC2012, INFN Frascati, Italy 2/9/2012

Back-up Slides RPC2012, INFN Frascati, Italy 2/9/2012

µ Events RPC2012, INFN Frascati, Italy 2/9/2012

Efficiency Vs. Trigger Criteria 1x5/8 2x4/8 3x3/8 4x2/8 Set 1 2x3/8 3x2/8 Set 2 1x4/8 Set 3 CC ν Events RPC2012, INFN Frascati, Italy 2/9/2012