Proving Lines are Parallel

Slides:



Advertisements
Similar presentations
Chapter 3.3 Notes: Prove Lines are Parallel
Advertisements

Chapter 3.2 Notes: Use Parallel Lines and Transversals
PARALLEL LINES AND TRANSVERSALS. CORRESPONDING ANGLES POSTULATE Two lines cut by a transversal are parallel if and only if the pairs of corresponding.
Use Parallel Lines and Transversals
Lesson 3-4 Proving lines parallel,. Postulates and Theorems Postulate 3-4 – If two lines in a plane are cut by a transversal so that corresponding angles.
3.3 Parallel Lines & Transversals
Angles and Parallel Lines
3.3 – Proves Lines are Parallel
Warm-Up x + 2 3x - 6 What is the value of x?. Geometry 3-3 Proving Lines Parallel.
PROVING LINES PARALLEL. CONVERSE OF  … Corresponding Angles Postulate: If the pairs of corresponding angles are congruent, then the lines are parallel.
3.3 Proving Lines Parallel Converse of the Corresponding Angles Postulate –If two lines and a transversal form corresponding angles that are congruent,
Proving Lines Parallel Section 3-5. Postulate 3.4 If 2 lines are cut by a transversal so that corresponding angles are congruent, then the lines are parallel.
Lesson 2-5: Proving Lines Parallel 1 Lesson Proving Lines Parallel.
3.2 Proving Lines Parallel
Prove Lines are Parallel
Geometry Section 3.2 Use Parallel Lines and Transversals.
Warm Up Week 1 1) If ∠ 1 and ∠ 2 are vertical angles, then ∠ 1 ≅ ∠ 2. State the postulate or theorem: 2) If ∠ 1 ≅ ∠ 2 and ∠ 2 ≅ ∠ 3, then ∠ 1.
PARALLEL LINES AND TRANSVERSALS SECTIONS
3-3 Proving Lines Parallel
1 2 Parallel lines Corresponding angles postulate: If 2 parallel lines are cut by a transversal, then corresponding angles are congruent….(ie.
Angle Relationships. Vocabulary Transversal: a line that intersects two or more lines at different points. Transversal: a line that intersects two or.
Section 3-3 Parallel Lines and Transversals. Properties of Parallel Lines.
Warm-Up Classify the angle pair as corresponding, alternate interior, alternate exterior, consecutive interior or.
3.2: Properties of Parallel Lines 1. Today’s Objectives  Understand theorems about parallel lines  Use properties of parallel lines to find angle measurements.
Section 3.2 Parallel Lines and Transversals Learning Goal: Students will identify congruent angles associated with parallel lines and transversals and.
3.4 Proving Lines Parallel Converse of 3.3. Theorems to find Parallel lines If two lines are cut by a transversal and corresponding angle are congruent,
Geometry Notes Sections .
3.2- Angles formed by parallel lines and transversals
PROPERTIES OF PARALLEL LINES POSTULATE
3-2 Properties of Parallel Lines
3.3 Parallel Lines and Transversals
3.4 Proving that Lines are Parallel
Proving Lines are Parallel
Properties of Parallel Lines
Use Parallel Lines and Transversals
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Parallel Lines and Angles
Chapter 3.2 Notes: Use Parallel Lines and Transversals
WARM UP: Identify the type of angles. Angles 5 and 7 Angles 8 and 11
3.5 Properties of Parallel Lines
Chapter 3: Parallel and Perpendicular Lines
Proving Lines Parallel
Parallel Lines and a Transversal Line
Parallel Lines and a Transversal Line
3.2- Angles formed by parallel lines and transversals
Use Parallel Lines and Transversals
3-2 Properties of Parallel Lines
Proving Lines Parallel
3.3 Prove Lines are || Mrs. vazquez Geometry.
Parallel Lines and Transversals
Proving Lines Parallel
3.2 – Proving Lines Parallel
Module 14: Lesson 3 Proving Lines are Parallel
Proving Lines Are Parallel
Properties of parallel Lines
Proving Lines Parallel
Proving Lines Parallel
Angle Relationships with Parallel Lines
Proving Lines Parallel
WARM UP: Identify the type of angles. Angles 5 and 7 Angles 8 and 11
2.3 Proving Lines Parallel Review of Previous Postulates
3-2 Proving Lines Parallel
Parallel Lines and Transversals
3.2 Parallel Lines and Transversals …..
Proving Lines Parallel
3.2 Notes: Use Parallel Lines and Transversals
Angles and Parallel Lines
Presentation transcript:

Proving Lines are Parallel Section 3-4 Proving Lines are Parallel

Converse of Corresponding Angles postulate If two lines are cut by a transversal so that corresponding angles are congruent, then the lines are parallel.

1 2 j k j║k therefore

Converse of Alternate interior Angles theorem If two lines are cut by a transversal so that alternate interior angles are congruent, then the lines are parallel.

j k 3 4 If , then j║k.

Converse of consecutive interior Angles theorem If two lines are cut by a transversal so that consecutive interior angles are supplementary, then the lines are parallel.

j k 5 6 If , then j║k.

Converse of Alternate exterior Angles theorem If two lines are cut by a transversal so that alternate exterior angles are congruent, then the lines are parallel.

j k 7 8 If , then j║k.