D. E. Shemansky† , J. A. Kammer ‡ , X. Zhang ‡ & Y. L. Yung‡

Slides:



Advertisements
Similar presentations
Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Simulation of skylight polarization with the DAK model and.
Advertisements

Global, Regional, and Urban Climate Effects of Air Pollutants Mark Z. Jacobson Dept. of Civil & Environmental Engineering Stanford University.
Photochemistry in the Atmospheres of Hot Jupiters Yuk L. Yung 1, Mao-Chang Liang 2, Michael Line 1 and Giovanna Tinetti 3 1 Division of Geological and.
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer 1, D. E. Shemansky 2, X. Zhang 1, Y. L. Yung 1 1 Division of Geological and Planetary Sciences,
GEOS-5 Simulations of Aerosol Index and Aerosol Absorption Optical Depth with Comparison to OMI retrievals. V. Buchard, A. da Silva, P. Colarco, R. Spurr.
Mars’ North and South Polar Hood Clouds Jennifer L. Benson Jet Propulsion Laboratory, California Institute of Technology July 22, 2010 Copyright 2010 California.
Titan’s Photochemical Model: Oxygen Species and Comparison with Triton and Pluto Vladimir Krasnopolsky Initial data: N 2 and CH 4 densities near the surface.
Revised tholin profile for the atmosphere of Titan Mao-Chang Liang 1, J. A. Kammer, X. Zhang 3, D. Shemansky 4, Y. L. Yung 2 1 Research Center for Environmental.
Distribution of H 2 O and SO 2 in the atmosphere of Venus Yung Y. 1, Zhang X. 1, Liang M.-C. 2 and Parkinson C. 3 1 California Institute of Technology.
CO 2 in the middle troposphere Chang-Yu Ting 1, Mao-Chang Liang 1, Xun Jiang 2, and Yuk L. Yung 3 ¤ Abstract Measurements of CO 2 in the middle troposphere.
Modeling Carbon Species in the Atmosphere of Neptune and Comparison with Spitzer Observations Xi Zhang 1, Mao-Chang Liang 2, Daniel Feldman 1, Julianne.
Seasonal Variations in the Mixing Layer in the UTLS Dave MacKenzie University of Toronto GEOS-Chem Meeting April 2009.
Radiative Modeling of the Atmosphere of Neptune Y. Yung 1, X. Zhang 1, R. Shia 1, M. Liang 2, G. Orton 3, A. Mainzer 3 and M. Burgdorf 4 1 Caltech, USA.
Source of Atomic Hydrogen in the Atmosphere of HD b Mao-Chang Liang Caltech Related publications 1. Liang et al. 2003, ApJ Letters, in press 2. Liang.
A Tale of Two Planets: Cassini UVIS He 584Å Airglow at Jupiter and Saturn Chris Parkinson, Caltech Planetary Science Seminar January 10, 2006.
Deuterated Methane and Ethane in the Atmosphere of Jupiter Christopher D. Parkinson 1,2, Anthony Y.-T. Lee 1, Yuk L. Yung 1, and David Crisp 2 1 Division.
(a)(b)(c) Simulation of upper troposphere CO 2 from two-dimensional and three-dimensional models Xun Jiang 1, Runlie Shia 2, Qinbin Li 1, Moustafa T Chahine.
METO 621 Lesson 27. Albedo 200 – 400 nm Solar Backscatter Ultraviolet (SBUV) The previous slide shows the albedo of the earth viewed from the nadir.
Photochemical Distribution of Venusian Sulphur and Halogen Species AND Why Vulcanism cannot be the source for Venusian SO 2 above 80km C. D. Parkinson.
Chemistry of Venus’ Atmosphere Vladimir A. Krasnopolsky Photochemical model for km Photochemical model for km Chemical kinetic model for.
Response of Middle Atmospheric Hydroxyl Radical to the 27-day Solar Forcing King-Fai Li 1, Qiong Zhang 2, Shuhui Wang 3, Yuk L. Yung 2, and Stanley P.
Photochemical Control of the Distribution of Venusian Water and Comparison to Venus Express SOIR Observations Christopher D. Parkinson 1, Yuk L. Yung 2,
 Assuming only absorbing trace gas abundance and AOD are retrieved, using CO 2 absorption band alone provides a DOF ~ 1.1, which is not enough to determine.
Negative ions at Titan: tholins for Titan’s haze? Andrew Coates, Mullard Space Science Laboratory, UCL, UK With thanks to Frank Crary, Dave Young, Hunter.
Oxidants on Small Icy Bodies and Snowball Earth Yuk L. Yung (Caltech) Mao-Chang Liang (Academia Sinica)
Airglow on Titan During Eclipse R. A. West 1, J. M. Ajello 1, M. H. Stevens 2, D. F. Strobel 3, G. R. Gladstone 4, J.S. Evans 5, E.T. Bradley 6 1 Jet Propulsion.
The state of the plasma sheet and atmosphere at Europa D. E. Shemansky 1, Y. L. Yung 2, X. Liu 1, J. Yoshii 1, C. J. Hansen 3, A. Hendrix 4, L. W. Esposito.
Summary  We have implemented numerically stable, continuous method of treating condensation on to grains in Titan’s atmosphere.  Our model can establish.
1 The Organic Aerosols of Titan’s Atmosphere Christophe Sotin, Patricia M. Beauchamp and Wayne Zimmerman Jet Propulsion Laboratory, California Institute.
Vertical Wavenumber Spectra of Gravity Waves in the Venus and Mars Atmosphere *Hiroki Ando, Takeshi Imamura, Bernd Häusler, Martin Pätzold.
Numerical simulations of optical properties of nonspherical dust aerosols using the T-matrix method Hyung-Jin Choi School.
COMPARATIVE TEMPERATURE RETRIEVALS BASED ON VIRTIS/VEX AND PMV/VENERA-15 RADIATION MEASUREMENTS OVER THE NORTHERN HEMISPHERE OF VENUS R. Haus (1), G. Arnold.
First global view of the Extratropical Tropopause Transition Layer (ExTL) from the ACE-FTS Michaela I. Hegglin, University of Toronto, CA Chris Boone,
Mao-Chang Liang 1,2, Claire Newman 3, Yuk L. Yung 3 1 Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan 2 Graduate Institute of.
Yuk Yung (Caltech), M. C. Liang (Academia Sinica), X. Zhang (Caltech),
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
X. Zhang 1, R. Shia 1, M. Liang 2, C. Newman 1, D. Shemansky 3, Y. Yung 1, 1 Division of Geological and Planetary Sciences, California Institute of Technology,
Jovian Stratospheric Circulation: Insights from Cassini Observations X. Zhang (1), R. Cosentino (2), R. Morales-Juberias (2), R. A. West (3), S. Coffing.
Studying the Venus terminator thermal structure observed by SOIR/VEx with a 1D radiative transfer model A. Mahieux 1,2,3, J. T. Erwin 3, S. Chamberlain.
(a)(b)(c) Simulation of upper troposphere CO 2 from two-dimensional and three-dimensional models Xun Jiang 1, Runlie Shia 2, Qinbin Li 1, Moustafa T Chahine.
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer †, D. E. Shemansky ‡, X. Zhang †, and Y. L. Yung † † California Institute of Technology, Pasadena,
Results We first best-fit the zonal wind and temperature simulated in the 3D PlanetWRF using the semi- analytic 2D model with,,, and. See Fig 2. The similarity.
National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California Atmospheric Infrared Sounder.
Night OH in the Mesosphere of Venus and Earth Christopher Parkinson Dept. Atmospheric, Oceanic, and Space Sciences University of Michigan F. Mills, M.
Fifth Workshop on Titan Chemistry April 2011, Kauai, Hawaii Organic Synthesis in the Atmosphere of Titan: Modeling and Recent Observations Yuk Yung.
Titan Glows in the Dark – West et al. and Ajello et al., 2012 R. A.. West, J. M. Ajello, M. H. Stevens, D. F. Strobel, G. R. Gladstone, J. S. Evans, and.
Haze and cloud in Pluto atmosphere Pascal Rannou, Franck Montmessin Service d'Aéronomie/IPSL, Université Versailles-St-Quentin.
SOIR Data Workshop SOIR science status A.C. Vandaele, A. Mahieux, S. Robert, R. Drummond, V. Wilquet, E. Neefs, B. Ristic, S. Berkenbosch, R. Clairquin.
Titan Airglow Spectra From 2004 and 2008 and Laboratory Results for UVIS, ISS and VIMS (800-11,000 Å) JOSEPH AJELLO JPL JACQUES GUSTIN MICHAEL STEVENS.
Titan and Saturn reports June, TOST agenda.
Variations of hydrogen in the thermosphere: nature and causes
UVIS Saturn Atmosphere Occultation Prospectus
HDAC analysis: Hydrogen in Titan‘s exosphere
Photochemical processes on Titan
Titan tholin properties from occultation and emission observations
Saturn upper atmosphere structure
Iapetus as measured by Cassini UVIS
* 07/16/96 Constraints on Titan’s Hign Haze from Cassini UVIS/ISS and Huygens DISR Observations *
Jet Propulsion Lab, California Institute of Technology
Monitoring Saturn's Upper Atmosphere Density Variations Using
Saturn temperature and H2 profiles from Solar EUV occultations
Cassini UVIS solar occultation
UVIS Saturn EUVFUV Data Analysis
Effects and magnitudes of some specific errors
Spectroscopy of solar prominences simultaneously from space and ground
Dione’s O2 Exosphere C. J. Hansen January 2013.
Revised tholin profile for the atmosphere of Titan
Titan Airglow FUV Limb Spectra From Cassini UVIS Observations
UVIS Titan T0, TA Analysis
UVIS Goals for CSM R. West.
Presentation transcript:

Part I Determination of kinetic temperature at the top of the Titan atmosphere D. E. Shemansky† , J. A. Kammer ‡ , X. Zhang ‡ & Y. L. Yung‡ † Planetary and Space Science Division, Space Environment Technologies, Altadena, California, USA ‡ California Institute of Technology, Pasadena, California USA Jan 4-6 UVIS Science Team Meeting, Caltech, Pasadena, CA

Mixing Ratios of Selected Species from Occultations

Hydrocarbon Abundances from TB Encounter Tholin scale heights above 540 km are larger than any other species indicating formation at high altitudes and downward diffusion.

Optical Depth Images

Optical Depth Images

Density Profiles from Solar Occultations

Conclusions High altitude profiles of CH4 abundance show deviation from hydrostatic distribution indicating that chemistry combined with tidal effects is the controlling factor in vertical structure. Kinetic temperature of the upper atmosphere cannot be directly derived from the profiles. The vertical structure, with thickness as narrow as ~25km may be related to the combination of temperature dependent chemistry and gravitational tidal waves that in theory (see Strobel, 2006) show widths of ~50km.

Conclusions Distinct layers in the observed higher order hydrocarbons in the 500 – 600km region are readily observed. There is evidence that the vertical structure is seasonally dependent. Tholin vertical distributions show strong peaks just above 500 km, and large scale heights above 800 km. Below 400 km tholin scale heights conform to the atmospheric scale. Benzene has been measured at north latitudes with large scale height in disagreement with INMS results, and with density about 3 times below the projected INMS values. High altitude tholin is confined to the low latitude regions.

Tholins in the Upper Atmosphere of Titan Part II Tholins in the Upper Atmosphere of Titan Yuk Yung (Caltech) X. Zhang (Caltech) M. C. Liang (Academia Sinica, Taiwan) D. E. Shemansky (Space Environment Technologies)

Lorenz + Mitton 2002

Solar Scattering Stellar Occultation J. Ajello

UVIS spectrum Stellar Occultation Impact: 514 km tholin CH4 Liang et al. 2007

Scattered light : Shemansky et al. 2009 Calibration : 3-15-02 Rept by UVIS Team

SSA = Qs/Qe Important Parameters Single Scattering Albedo (SSA): Goody and Yung 1989

SSA at 1875 Å Obs: 0.118 Mie code calculation Refractive Index from Khare and Sagan (1984) 16 nm

Shemansky et al. 2010

. 2 Comparisons Tomasko et al. 2008: ~100 km 50 nm radius 3000 monmers Trainer, et al 2006 Tomasko et al. 2008: ~100 km 50 nm radius 3000 monmers

Summary Tholin Radius at 1040 km: 16 nm Liang et al. (2007) “guessed” 12.5 nm from Stellar Occultation only Comparable to 25 nm (in radius) from Trainer et al. (2006) Source of monomers at ~100 km from Tomasko et al. (2008)

Thanks Cassini UVIS (PI Esposito) PATM (Phil Crane) OPR (Curt Niebur)