Califes Laser Optical design

Slides:



Advertisements
Similar presentations
Vulcan Front End OPCPA System
Advertisements

Positronium Rydberg excitation in AEGIS Physics with many positrons International Fermi School July 2009 – Varenna, Italy The experimental work on.
CTF3 Laser Status Massimo Petrarca CLIC January
1 Injector Lasers Overview Sasha Gilevich, SLAC April 29, 2004 Drive Laser Specifications Challenges System Description Laser Procurement R&D Effort UV.
INTRO TO SPECTROSCOPIC METHODS (Chapter 6) NATURE OF LIGHT AND INTERACTION WITH MATTER Electromagnetic Radiation (i.e., “light”) –Wave-particle duality.
Bill White Drive Laser April 16, Drive Laser Commissioning Experience Reminder of requirements on Drive Laser.
SLAC XFEL Short Bunch Measurement and Timing Workshop 1 Current status of the FERMI project (slides provided by Rene Bakker) Photoinjector laser system.
1 HF Laser/LED Calibration Studies L. Almeida, M. Baarmand, L. Caraway, M. Hohlmann, T. Qureshi, I. Vodopianov FLORIDA TECH 1->9 light splitter w/ pulsed.
CTF3 lasers Marta Csatari Divall Eric Chevallay, Valentine Fedosseev, Nathalie Lebas, Roberto Losito, Massimo Petrarca, CERN, EN-STI CTF3 Collaboration.
Siegfried Schreiber, DESY The TTF Laser System Laser Material Properties Conclusion? Issues on Longitudinal Photoinjector.
30. Nov I.Will, G. Klemz, Max Born Institute: Optical sampling system Optical sampling system for detailed measurement of the longitudinal pulse.
The ILC Laser-wire system Sudhir Dixit The John Adams Institute University of Oxford.
Photon Collider at CLIC Valery Telnov Budker INP, Novosibirsk LCWS 2001, Granada, Spain, September 25-30,2011.
October 16-18, 2012Working Group on Space-based Lidar Winds 1 AEOLUS STATUS Part 1: Design Overview.
DMP Product Portfolio Femtosecond Lasers Trestles Ti:Sapphire lasers …… fs; nm, mW Mavericks Cr:Forsterite lasers
High efficiency generation and detection of terahertz pulses using laser pulses at tele- communication wavelengths A.Schneider et al. OPTICS EXPRESS 5376/Vol.14,No.12(2006)
Intermode Dispersion (MMF)
ABSORPTION AND DIFFUSION MEASUREMENT OF BIOLOGICAL SAMPLES USING A FREE ELECTRON LASER M. D’Arienzo, A. Doria, G.P. Gallerano, E. Giovenale, A. Lai, G.
CTF3 photo injector laser status CERN 17 July 2009 CLIC meeting.
30 Nov. 06 I.Will et al., Max Born Institute: Long trains of flat-top laser pulses Photocathode lasers generating long trains of flat-top pulses Ingo Will,
CTF3 Collaboration meeting – CERN, January 2007 Laser system schematic 22 44 1.55  s 200  s, 5-50 Hz 15 kW 10  J 270  s ~2332 pulses 370.
G J Hirst Central Laser Facility Status of the CTF3 Photoinjector Laser at CCLRC Central Laser Facility G J Hirst, M Divall, G Kurdi, W L Martin, I O Musgrave,
Lasers and RF-Timing Franz X. Kaertner
Advancement in photo-injector laser: Second Amplifier & Harmonic Generation M. Petrarca CERN M. Martyanov, G. Luchinin, V. Lozhkarev Institute of Applied.
V. Sonnenschein, I. D. Moore, M. Reponen, S. Rothe, K.Wendt.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Laser System Upgrade Overview
Laboratoire de Chimie-Physique CNRS – Université Paris-Sud UMR ORSAY Cs 2 Te photocathodes at ELYSE.
Cs 2 Te Photocathodes for CTF3 Photoinjectors R. LOSITO - CERN 4/10/2006.
Parameters of the NF Target Proton Beam pulsed10-50 Hz pulse length1-2  s energy 2-30 GeV average power ~4 MW Target (not a stopping target) mean power.
Some Results and Analysis from CTF3 1HG2012-April-18 Some Results and Analysis from CTF3 W. Farabolini - A. Palaia.
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
F. Peauger19th June #3-CTF3 Committee1 CALIFES STATUS CA.BHB 0400CA.SNH 0110CA.SNI 0120 CA.VVS 0100 CA.DHG/DVG 0130 CA.VVS 0200 CA.MTV 0215 CA.BPM.
1 Junji Urakawa (KEK, Japan) at PosiPol2012, Under development of Quantum Beam Technology Program(QBTP) supported by MEXT from to
25/05/2007POSIPOL FOUR MIRRORS Fabry Perot resonator at LAL-Orsay Y. Fedala With help of F. Zomer, R.Cizeron.
Nd:YAG Solid Laser Xiangyu Zhou 20. Nov Yb fiber laser system on the ground Menlo 1030nm oscillator Grating stretcher (Transmission) SOA pulse.
Laser activities at University of Pavia in support to SPES project Daniele Scarpa.
Laser Arm for Photo-injector Mikhail Martyanov, Valentin Fedosseev, Christoph Hessler AWAKE PEB meeting , CERN.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
V.N. Litvinenko (SBU) C. Joshi, W. Mori (UCLA)
CTF3 PROBE BEAM LINAC COMMISSIONG AND OPERATIONS
Ring Resonator Gyroscope
EUROTeV Diagnostics WP5
S.M. Polozov & Ko., NRNU MEPhI
SPARCLAB: PW-class Ti:Sa laser+SPARC
Linac beam dynamics Linac dynamics : C. Bruni, S. Chancé, L. Garolfi,
The PHIN Photoinjector for CTF3
Laser System Upgrade Overview
ILC/ATF-2 Laser System Sudhir Dixit (JAI, Oxford)
Single and dual wavelength Er:Yb double clad fiber lasers
Status of the Thomson Source
Polarized e- Source Design and R&D 10/24/05
High power high energy ultrafast fiber amplifiers
Ideas for medium and long term facility upgrade Roberto Corsini for the CLIC Accelerator Collaboration.
Have a chance to operate your own beam at CERN
LAB-LASER MILANO Pulse shaping Sparc meeting october 4th 2004.
history, status and upgrade
Nd:YAG Solid Laser 3-2 / A-1 on the ground
N2 Vibrational Temperature, Gas Temperature,
Control of laser wakefield amplitude in capillary tubes
Phto-injector laser chain NEWS
RF-Gun for Phase-II RF Gun 10, June, 2016.
Deng Ziyan Jan 10-12, 2006 BESIII Collaboration Meeting
Short focal length target area: X-ray & ion sources and applications
Drive Laser Facility Layout Drive Laser Architecture Technical Issues
CLIC Feasibility Demonstration at CTF3
Drive Laser Commissioning Status
LCLS Injector Laser System Paul R. Bolton, SLAC April 24, 2002
Injector Drive Laser Technical Status
Optical-phase conjugation in difference-frequency generation
Presentation transcript:

Califes Laser Optical design M Gilbert – P.Y Thro - G.Cheymol Laboratoire Interaction Laser Matière/SCP/DPC/DEN/DANS/CEA Saclay DEPARTEMENT DE PHYSICO-CHIMIE DEN/Saclay CTF3 coll meeting 16-17 jan 07

Laser-Matter Interaction Lab. : competences Complex optical systems and processes using the laser-matter interaction optimisation PROCESSES valorisation Laser physics Optics Laser ablation Active pyrometry Laser produced plasma Surface treatment OPTICAL SYSTEMS Laser-matter interaction Diode-pumped solid-state lasers Frequency conversion In-situ analysis in hostile environment Optical fiber technologies Innovative instrumentation MODELLING interpretation prediction Laser-matter Interaction Modelling of solid-state laser Simulation of optical systems Physicochemistry of surfaces DEPARTEMENT DE PHYSICO-CHIMIE DEN/Saclay CTF3 coll meeting 16-17 jan 07

µpulse:1.5GHz,6ps, 10mJ/pulse Global Scheme Drive Beam Probe Beam drive beam output Oscillator + préamp 1047 nm 1.5GHz; 10ps 10W; 6.7 nJ/pulse Ampli n°1 et n°2 macropulse:5 Hz,270µs 20W; µpulse:1.5GHz,6ps, 10mJ/pulse Pulse shaping & stabilisation Drive Beam gun t Spare beam :  for probe beam t To simplify the following views t Pulse selector & mixer 1.5 GHz  3GHz 1 to 64 µpulse@ 3GHz 128 µpulse@ 1.5GHz Frequency Conversion ω  4ω 1047nm to 262 nm η=12% Beam transport ~ 80m & Position control Probe Beam gun DEPARTEMENT DE PHYSICO-CHIMIE DEN/Saclay CTF3 coll meeting 16-17 jan 07

Pulse selector and mixer: 1.5 GHz 3 GHz 25ns Optical delay 7.5 m (25ns) Combination through a polariser t 1to64 pulses @ 3 GHz t zoom 1to32 micropulses @ 1.5 GHz max 21.3 ns t Scheme of 2 pulses to be selected and combined to generate à 3 GHz beam. ~20µs DEPARTEMENT DE PHYSICO-CHIMIE DEN/Saclay CTF3 coll meeting 16-17 jan 07

Pulse picker: details and combination DEPARTEMENT DE PHYSICO-CHIMIE DEN/Saclay CTF3 coll meeting 16-17 jan 07

Pulse picker: specifications Transmission expected time diagram Mains specifications for the pulse picker: sharp rise and fall time: ~400 ps (period:1.5 Ghz 666ps) duration ~ 0.5 ns to 85 ns with stability better than ± 1.25% - low transmission (< 4%) out of the pulse selected - need of high transmission on tranmitted beam but also on rejected beam (T to be confirmed) DEPARTEMENT DE PHYSICO-CHIMIE DEN/Saclay CTF3 coll meeting 16-17 jan 07

Frequency conversion – Type of crystal 2w TYPE I : e Optical axis w o 2w e w TYPE II : o Optical axis DRIVE BEAM : ω  2ω BBO type I ; 2ω  4ω BBO type I PROBE BEAM : ω  2ω KTP, LBO type II  ; 2ω  4ω BBO, CLBO type I DEPARTEMENT DE PHYSICO-CHIMIE DEN/Saclay CTF3 coll meeting 16-17 jan 07

Frequency conversion – parameters KTP (II) LBO (II) BBO (I) CLBO (I) ω -> 2 ω 2ω -> 4 ω  incident (nm) 1047 523 deff :non linearity coeff (pm.V) 3.0 0.62 1.74 0.8 L : length of crystal (cm) 0.6 1.5 1/e²: diameter (mm) 1.8 1.14 2.04 2.1 Tolerance: Angular acceptance: =   2  /acc   0.028 0.125 0.48 0.32 Walk-off :  =2.max..L /  0.038 0.17 0.67 0.44 GVM : GVM = GVM.L /Dt1/2 0.267 0.97 1.04 Typical parameters and tolerances calculations for entering beam parameters: 10µJ, 6ps, 1047 nm, M²(beam quality factor) =1 and for CE (conversion efficiency) =35% ( 12% for  -> 4) DEPARTEMENT DE PHYSICO-CHIMIE DEN/Saclay CTF3 coll meeting 16-17 jan 07

Optical path on « laser table » / provisional DEPARTEMENT DE PHYSICO-CHIMIE DEN/Saclay CTF3 coll meeting 16-17 jan 07

Optical relay /afocal system disturbance A A’ ft d Optical relay reduce consequences of miroir vibration, air turbulence in plane A’ 3 lenses afocal system allows to: - decrease the footprint of the optical system for a given relay distance. - change Gy and relay distance (to some extent) DEPARTEMENT DE PHYSICO-CHIMIE DEN/Saclay CTF3 coll meeting 16-17 jan 07

« under the roof » long distance beam delivery 2 afocal optical relay: L1-L2 with f~ 10 m L3-L4 with f~ 7.5m DEPARTEMENT DE PHYSICO-CHIMIE DEN/Saclay CTF3 coll meeting 16-17 jan 07

under air / under vacuum beam delivery Concequence of Temperture and Pressure variations: n-1 (~ 3 10-4) proportional to P et T. n: air optical index l = 80m and ΔT or ΔP = 1%  Δ (n .l) ~ 0.3mm  Δt ~ 1 ps. Attenuation (@ 262 nm): Rayleigh Diffusion  Transmission = 98%. Ozone absorption: = ~10-17 cm-2 (max at 255 nm). : absorption cross section 40 ppb ozone, l= 80m  T=92%.  Transport under vacuum to be prefered DEPARTEMENT DE PHYSICO-CHIMIE DEN/Saclay CTF3 coll meeting 16-17 jan 07

« photoinjector » optical table DEPARTEMENT DE PHYSICO-CHIMIE DEN/Saclay CTF3 coll meeting 16-17 jan 07