CS583 – Data Mining and Text Mining

Slides:



Advertisements
Similar presentations
CS583 – Data Mining and Text Mining
Advertisements

Web Search and Mining Course Overview 1 Wu-Jun Li Department of Computer Science and Engineering Shanghai Jiao Tong University Lecture 0: Course Overview.
5/19/2015CS 2011 CS 201 – Data Structures and Discrete Mathematics I Syllabus Spring 2014.
2015/6/1Course Introduction1 Welcome! MSCIT 521: Knowledge Discovery and Data Mining Qiang Yang Hong Kong University of Science and Technology
CS583 – Data Mining and Text Mining
1 Course Information Parallel Computing Spring 2010.
CS/CMPE 535 – Machine Learning Outline. CS Machine Learning (Wi ) - Asim LUMS2 Description A course on the fundamentals of machine.
CS 331 / CMPE 334 – Intro to AI CS 531 / CMPE AI Course Outline.
1 Data Mining Techniques Instructor: Ruoming Jin Fall 2006.
An Overview of Our Course:
Data Mining – Intro.
CS 5831 CS583 – Data Mining and Text Mining Course Web Page 05/cs583.html.
CS 5941 CS583 – Data Mining and Text Mining Course Web Page 05/cs583.html.
CS583 – Data Mining and Text Mining
CS583 – Data Mining and Text Mining Course Web Page 07/cs583.html.
Data Mining. 2 Models Created by Data Mining Linear Equations Rules Clusters Graphs Tree Structures Recurrent Patterns.
CSCI 347 – Data Mining Lecture 01 – Course Overview.
Course Title Database Technologies Instructor: Dr ALI DAUD Course Credits: 3 with Lab Total Hours: 45 approximately.
Introduction to Web Mining Spring What is data mining? Data mining is extraction of useful patterns from data sources, e.g., databases, texts, web,
CS525 DATA MINING COURSE INTRODUCTION YÜCEL SAYGIN SABANCI UNIVERSITY.
CS 5831 CS583 – Data Mining and Text Mining Course Web Page 06/cs583.html.
Overview of CS Class Jiawei Han Department of Computer Science
Data Warehousing/Mining 1 Data Warehousing/Mining Comp 150DW Course Overview Instructor: Dan Hebert.
Data Mining – Intro. Course Overview Spatial Databases Temporal and Spatio-Temporal Databases Multimedia Databases Data Mining.
Introduction of Data Mining and Association Rules cs157 Spring 2009 Instructor: Dr. Sin-Min Lee Student: Dongyi Jia.
CS511: Artificial Intelligence II
General Information 439 – Data Mining Assist.Prof.Dr. Derya BİRANT.
COMP53311 Knowledge Discovery in Databases Overview Prepared by Raymond Wong Presented by Raymond Wong
9/03 Data Mining – Introduction G Dong (WSU)1 CS499/ Data Mining Fall 2003 Professor Guozhu Dong Computer Science & Engineering WSU.
ITIS 4510/5510 Web Mining Spring Overview Class hour 5:00 – 6:15pm, Tuesday & Thursday, Woodward Hall 135 Office hour 3:00 – 5:00pm, Tuesday, Woodward.
CSCE 5073 Section 001: Data Mining Spring Overview Class hour 12:30 – 1:45pm, Tuesday & Thur, JBHT 239 Office hour 2:00 – 4:00pm, Tuesday & Thur,
Sotarat Thammaboosadee, Ph.D. EGIT563- Data Mining Course Outline.
DATA MINING: LECTURE 1 By Dr. Hammad A. Qureshi Introduction to the Course and the Field There is an inherent meaning in everything. “Signs for people.
Introduction.  Instructor: Cengiz Örencik   Course materials:  myweb.sabanciuniv.edu/cengizo/courses.
DATA MINING and VISUALIZATION Instructor: Dr. Matthew Iklé, Adams State University Remote Instructor: Dr. Hong Liu, Embry-Riddle Aeronautical University.
CSC 4740 / 6740 Fall 2016 Data Mining Instructor: Yubao Wu Fall 2016.
CS583 – Data Mining and Text Mining
Term Project Proposal By J. H. Wang Apr. 7, 2017.
Course Overview - Database Systems
Data Mining – Intro.
Introduction to Data Mining- CMPT 741 Instructor: Ke Wang
COMP1942 Exploring and Visualizing Data Overview
CS583 – Data Mining and Text Mining
中国计算机学会学科前沿讲习班:信息检索 Course Overview
CS598CXZ (CS510) Advanced Topics in Information Retrieval (Fall 2016)
Course Summary (Lecture for CS410 Intro Text Info Systems)
Jiawei Han Computer Science University of Illinois at Urbana-Champaign
CS 201 – Data Structures and Discrete Mathematics I
CS 201 – Data Structures and Discrete Mathematics I
Data Mining: Concepts and Techniques Course Outline
CS583 – Data Mining and Text Mining
Data Mining Modified from
CS7280: Special Topics in Data Mining Information/Social Networks
Sangeeta Devadiga CS 157B, Spring 2007
CS510 (Fall 2018) Advanced Topics in Information Retrieval
Introduction --- Part2 Another Introduction to Data Mining
CSE591: Data Mining by H. Liu
CS583 – Data Mining and Text Mining
CS583 – Data Mining and Text Mining
Lecture 00: Introduction
Data Mining: Introduction
CS583 – Data Mining and Text Mining
Welcome! Knowledge Discovery and Data Mining
CSCE 4143 Section 001: Data Mining Spring 2019.
CS583 – Data Mining and Text Mining
CSE591: Data Mining by H. Liu
CSE572: Data Mining by H. Liu
CSE572: Data Mining by H. Liu
CS 474/674 – Image Processing Fall Prof. Bebis.
First 2-3 Lectures (Intro to DS/DM)
Presentation transcript:

CS583 – Data Mining and Text Mining Course Web Page http://www.cs.uic.edu/~liub/teach/cs583-fall-17/cs583.html

General Information Teaching assistant (TA) Lecture: Instructor: Bing Liu Email: liub@uic.edu Tel: (312) 355 1318 Office: SEO 931 Teaching assistant (TA) Sahisnu Mazumder <sahisnumazumder@gmail.com> Lecture: 3:30pm-4:45pm Tuesday and Thursday, LC A2 My office hours: 2:00pm-3:15pm, Tuesday & Thursday (or by appointment) CS583, Bing Liu, UIC

Course structure The course has two parts: Lectures - Introduction to the main topics Two projects (done in groups) 1 programming project. 1 research project. Lecture slides are available on the course web page. CS583, Bing Liu, UIC

Grading Final Exam: 40% Midterm: 20% Quiz: 10% Projects: 30% 1 midterm Multiple quizzes Projects: 30% 1 programming (15%). 1 research assignment (15%) CS583, Bing Liu, UIC

Prerequisites Knowledge of basic probability theory algorithms CS583, Bing Liu, UIC

Teaching materials Required Text References: Web Data Mining: Exploring Hyperlinks, Contents and Usage data. By Bing Liu, Second Edition, Springer, ISBN 978-3-642-19459-7. References: Data mining: Concepts and Techniques, by Jiawei Han and Micheline Kamber, Morgan Kaufmann, ISBN 1-55860-489-8. Introduction to Data Mining, by Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, Pearson/Addison Wesley, ISBN 0-321-32136-7. Principles of Data Mining, by David Hand, Heikki Mannila, Padhraic Smyth, The MIT Press, ISBN 0-262-08290-X. Machine Learning, by Tom M. Mitchell, McGraw-Hill, ISBN 0-07-042807-7 CS583, Bing Liu, UIC

Topics Information retrieval and Web search Introduction Data pre-processing Association rules and sequential patterns Supervised learning (classification) Unsupervised learning (clustering) Semi-supervised learning Lifelong machine learning Information retrieval and Web search Social network analysis Opinion mining and sentiment analysis Recommender systems and collaborative filtering Web data extraction CS583, Bing Liu, UIC

Feedback and suggestions Your feedback and suggestions are most welcome! I need it to adapt the course to your needs. Let me know if you find any errors in the textbook. Share your questions and concerns with the class – very likely others may have the same. No pain no gain The more you put in, the more you get Your grades are proportional to your efforts. CS583, Bing Liu, UIC

Rules and Policies Statute of limitations: No grading questions or complaints, no matter how justified, will be listened to one week after the item in question has been returned. Cheating: Cheating will not be tolerated. All work you submitted must be entirely your own. Any suspicious similarities between students' work will be recorded and brought to the attention of the Dean. The MINIMUM penalty for any student found cheating will be to receive a 0 for the item in question, and dropping your final course grade one letter. The MAXIMUM penalty will be expulsion from the University. Late assignments: Late assignments will not, in general, be accepted. They will never be accepted if the student has not made special arrangements with me at least one day before the assignment is due. If a late assignment is accepted it is subject to a reduction in score as a late penalty. CS583, Bing Liu, UIC

Introduction to the course

What is data mining? Data mining is also called knowledge discovery and data mining (KDD) Data mining is extraction of useful patterns from data sources, e.g., databases, texts, web, images, etc. Patterns must be: valid, novel, potentially useful, understandable CS583, Bing Liu, UIC

Classic data mining tasks Classification: mining patterns that can classify future (new) data into known classes. Association rule mining mining any rule of the form X  Y, where X and Y are sets of data items. E.g., Cheese, Milk Bread [sup =5%, confid=80%] Clustering identifying a set of similarity groups in the data CS583, Bing Liu, UIC

Classic data mining tasks (contd) Sequential pattern mining: A sequential rule: A B, says that event A will be immediately followed by event B with a certain confidence Deviation detection: discovering the most significant changes in data Data visualization: using graphical methods to show patterns in data. CS583, Bing Liu, UIC

Why is data mining important? Computerization of businesses produce huge amount of data How to make best use of data? Knowledge discovered from data can be used for competitive advantage. Online e-businesses are generate even larger data sets Online retailers (e.g., amazon.com) are largely driving by data mining. Web search engines are information retrieval (text mining) and data mining companies CS583, Bing Liu, UIC

Why is data mining necessary? Make use of your data assets There is a big gap from stored data to knowledge; and the transition won’t occur automatically. Many interesting things that one wants to find cannot be found using database queries “find people likely to buy my products” “Who are likely to respond to my promotion” “Which movies should be recommended to each customer?” CS583, Bing Liu, UIC

Why data mining? The data is abundant (big data). The computing power is not an issue. Data mining tools are available The competitive pressure is very strong. Almost every company is doing (or has to do) it CS583, Bing Liu, UIC

Related fields Data mining is an multi-disciplinary field: Machine learning Statistics Databases Information retrieval Visualization Natural language processing etc. CS583, Bing Liu, UIC

Data mining (KDD) process Understand the application domain Identify data sources and select target data Pre-processing: cleaning, attribute selection, etc Data mining to extract patterns or models Post-processing: identifying interesting or useful patterns/knowledge Incorporate patterns/knowledge in real world tasks CS583, Bing Liu, UIC

Data mining applications Marketing, customer profiling and retention, identifying potential customers, market segmentation. Engineering: identify causes of problems in products. Scientific data analysis, e.g., bioinformatics Fraud detection: identifying credit card fraud, intrusion detection. Text and web: a huge number of applications … Any application that involves a large amount of data … CS583, Bing Liu, UIC

Text mining Data mining on text Main topics Due to online texts on the Web and other sources Text contains a huge amount of information of almost any imaginable type! A major direction and tremendous opportunity! Main topics Text classification and clustering Information retrieval Information extraction Opinion mining CS583, Bing Liu, UIC

Resources ACM SIGKDD (ACM Special Interest Group on Knowledge Discovery and Data Mining) Data mining related conferences Data mining: KDD, ICDM, SDM, … AI: ICML, NIPS, AAAI, IJCAI, ACL, … Databases: SIGMOD, VLDB, ICDE, … Web: WWW, WSDM, … Information retrieval: SIGIR, CIKM, … Kdnuggets: http://www.kdnuggets.com/ News and resources. You can sign-up! CS583, Bing Liu, UIC

Project assignments Done in groups: Project 1: Implementation Number of students per group: 2 Project 1: Implementation TBD Project 2: Research CS583, Bing Liu, UIC