Wind Turbine Blade Design

Slides:



Advertisements
Similar presentations
Lecture 30 November 4, 2013 ECEN 2060 Lecture 30 Fall 2013.
Advertisements

Wind Energy in the Classroom
Investigating the Use of a Variable-Pitch Wind Turbine to Optimize Power Output Under Varying Wind Conditions. Galen Maly Yorktown High School.
Wind Turbine Blade Design
Vertical-Axis Wind Turbine Kang Zheng Aaron Peterson Mohd Ramjis.
Wind Turbine Blade Design
Wind Energy Technology
Announcements Read Chapter 7 Quiz on HW 3 Today
Wind Energy Chemical Engineering Seminar By: Jacqueline Milkovich.
By John Zavalney. Elaborate How can wind be used more efficiently? QUICK WRITE PROMPT In your notebook list as many factors that you can think of that.
Design of Wind Turbines P M V Subbarao Professor Mechanical Engineering Department Selection of Optimal Geometrical & Kinematic Variables ….
Module 5.2 Wind Turbine Design (Continued)
Rotor Track and Balance
Wind Turbine Project Recap Wind Power & Blade Aerodynamics
Design Process Supporting LWST 1.Deeper understanding of technical terms and issues 2.Linkage to enabling research projects and 3.Impact on design optimization.
Power Generation from Renewable Energy Sources
Wind Energy.
Answers to Windmill Project Research Questions
What is Electricity? Electricity is energy transported by the motion of electrons Electricity is energy transported by the motion of electrons **We.
The Answer is Blowing in the Wind… The Power of Wind.
Energy in the Wind Walt Musial Senior Engineer National Wind Technology Center National Renewable Energy Laboratory Kidwind Teachers’ Workshop May 14,
Wind Power Energy Sources Fall Wind Potential Wind energy is the most abundant renewable energy source after solar 120 GW of peak world capacity.
Wind Turbine Blade Design
Wind Turbine Aerodynamics Section 1 – Basic Principles E-Learning UNESCO ENEA Casaccia - February Fabrizio Sardella.
Topic: Wind Turbine Activity Objective: ▫ Create, test, and improve wind turbine blades so that they create the largest possible voltage 1 Summary: ▫ Students.
Power Generation from Renewable Energy Sources Fall 2012 Instructor: Xiaodong Chu : Office Tel.:
Small Wind Converting Wind Energy to Electricity.
Wind Energy 101 Joe Rand The Kidwind Project St. Paul, MN
Aerodynamic forces on the blade, COP, Optimum blade profiles
Wind Turbine Blade Design. Orientation Turbines can be categorized into two overarching classes based on the orientation of the rotor Vertical AxisHorizontal.
Wind Energy Technology
Wind Energy Basics. What is “Renewable Energy?”
Wind Energy. Introduction to wind What is wind? Wind is simply air in motion. It is produced by the uneven heating of the Earth’s surface by energy from.
Tube well pump using wind power Nishan Madushanka HND/CV/03/12.
Wind Energy Basics The Kidwind Project
Wind Energy Basics The Kidwind Project
Wind Turbine Blade Design Joseph Rand The Kidwind Project
Turbine blade basics. Calculation of Wind Power Where P = power, measured in watts (W) or joules per second (J/s)  = density of fluid, measured in.
INDUCTION GENERATOR FOR WIND POWER GENERATION
Wind Turbine Project Lift, Drag, Blade Aerodynamics & Power
Wind Turbine Project Recap Wind Power & Blade Aerodynamics.
Rotor Track and Balance
Wind Energy Basics.
Review of Airfoil Aerodynamics
UNIT II WIND ENERGY COLLECTORS
WIND ENERGY By: Manjunath Terwad.
Wind Energy Basics The Kidwind Project
Walk-In Get your 5 points! Quietly take out:
Wind Power and Wind Turbines
Wind Turbine Blade Design
Wind Turbine
Betz Theory for A Blade Element
Blade Design for Modern Wind Turbines
Presentation on Optical Computing
By: Nawaz Haider Bashir SESE_Science GHS Patti Bulanda
Wind Turbine Blade Design
ECE 333 Green Electric Energy
Dynamic Controllers for Wind Turbines
Wind Energy Technology
COMBINED DARRIEUS - SAVONIUS WIND TURBINE
Wind Turbine Blade Design
Wind Turbine Blade Design
Wind Energy Technology
DESIGN, SYSTEM PERFORMANCE, ECONOMIC ANALYSIS
ME 252 Thermal-Fluid Systems G. Kallio
Wind Energy Basics The Kidwind Project
KidWind Learning to build a Wind Turbine
Calculating Wind Turbine Efficiency
Commercial wind energy
Wind Turbine Types.
Presentation transcript:

Wind Turbine Blade Design Joseph Rand The Kidwind Project joe@kidwind.org 877-917-0079

A look inside. Blades are a very important component (duh!) Things to note as compared to Small Wind Turbines Blades can be actively pitched by hydraulics. Spin at 12-20 RPM --- much slower than a small wind turbine Large driveshaft attached to a gearbox….must go from 12-20 RPM to 1600 RPM for the generator. Generator creates electricity. Small Wind Turbines use vanes (typcally) to track the wind…they uses and anemometer and hydraulics to move the turbine. Highly computerized and automated….senses conditions and can turn itself off if there is a problem. Often connected by computers to one location and run from there.

Calculation of Wind Power Power in the wind Effect of swept area, A Effect of wind speed, V Effect of air density,  Power in the Wind = ½ρAV3 R This is the equation for the power in the wind. (Don’t fear – there are only 2 equations in this presentation.) Each of the terms in this equation can tell us a lot about wind turbines and how they work. Lets look at wind speed (V), swept area (A), and density (Greek letter “rho,” ) one at a time. First, let’s look at wind speed, V. Because V is cubed in the equation, a small increase in V makes for a increase in power. (illustrated on next slide) (Click on the links at the bottom to get the values of both k and .) Swept Area: A = πR2 Area of the circle swept by the rotor (m2).

Many Different Rotors… Various rotor configurations… all used to convert wind into usable energy. Why do the rotors differ so greatly? Why have we come to use the typical 3-blade rotor in nearly all industrial wind turbines today? KidWind Project | www.kidwind.org

Number of Blades – One Rotor must move more rapidly to capture same amount of wind Gearbox ratio reduced Added weight of counterbalance negates some benefits of lighter design Higher speed means more noise, visual, and wildlife impacts Blades easier to install because entire rotor can be assembled on ground Captures 10% less energy than two blade design Ultimately provide no cost savings

Number of Blades - Two Advantages & disadvantages similar to one blade Need teetering hub and or shock absorbers because of gyroscopic imbalances Capture 5% less energy than three blade designs

Number of Blades - Three Balance of gyroscopic forces Slower rotation increases gearbox & transmission costs More aesthetic, less noise, fewer bird strikes

Blade Composition Wood Strong, light weight, cheap, abundant, flexible Popular on do-it yourself turbines Solid plank Laminates Veneers Composites

Blade Composition Metal Steel Heavy & expensive Aluminum Lighter-weight and easy to work with Expensive Subject to metal fatigue

Blade Construction Fiberglass Lightweight, strong, inexpensive, good fatigue characteristics Variety of manufacturing processes Cloth over frame Pultrusion Filament winding to produce spars Most modern large turbines use fiberglass

KidWind Project | www.kidwind.org

KidWind Project | www.kidwind.org These “scimitar” shaped blades are designed to be efficient while also reducing NOISE coming off the blades. Since this is a downwind rotor there are more variables to consider… downwind turbines can be noisier and experience turbulent wind going around the tower. KidWind Project | www.kidwind.org

Lift & Drag Forces The Lift Force is perpendicular to the direction of motion. We want to make this force BIG. The Drag Force is parallel to the direction of motion. We want to make this force small. α = low α = medium <10 degrees α = High Stall!!

Airfoil Shape Just like the wings of an airplane, wind turbine blades use the airfoil shape to create lift and maximize efficiency. The Bernoulli Effect

Lift/Drag Forces Experienced by Turbine Blades These vectors represent the forces experienced by an airfoil wind turbine blade as it rotates. Notice that the “apparent wind” is a combination of the “real wind” and the “head wind” Well designed blades should minimize the drag force. KidWind Project | www.kidwind.org

Twist & Taper Speed through the air of a point on the blade changes with distance from hub Therefore, tip speed ratio varies as well To optimize angle of attack all along blade, it must twist from root to tip Fast Faster Fastest

Tip-Speed Ratio ΩR TSR = V R Ω = rotational speed in radians /sec Tip-speed ratio is the ratio of the speed of the rotating blade tip to the speed of the free stream wind. There is an optimum angle of attack which creates the highest lift to drag ratio. Because angle of attack is dependant on wind speed, there is an optimum tip-speed ratio R ΩR V TSR = Where, Ω = rotational speed in radians /sec R = Rotor Radius V = Wind “Free Stream” Velocity

Performance Over Range of Tip Speed Ratios Power Coefficient Varies with Tip Speed Ratio Characterized by Cp vs Tip Speed Ratio Curve

Betz Limit All wind power cannot be captured by rotor or air would be completely still behind rotor and not allow more wind to pass through. Theoretical limit of rotor efficiency is 59% Most modern wind turbines are in the 35 – 45% range

Rotor Solidity Solidity is the ratio of total rotor planform area to total swept area Low solidity (0.10) = high speed, low torque High solidity (>0.80) = low speed, high torque R a A Solidity = 3a/A

Pitch Control Mechanisms KidWind Project | www.kidwind.org

Some Wacky Ideas…

Manufacturing Blades The blade mold (left) is lined with layers of fiberglass, then injected with epoxy resin. To enhance stiffness, a layer of wood is placed between the fiberglass layers. The two molds are joined and adhered together using a special liquid epoxy, which evenly joins the two sides of the blade. Finally, the whole mold is baked like a cake! 8 hours at 70 degrees C.

Manufacturing Blades Before delivery, samples of the rotor blades have to go through a variety of static and dynamic tests. First, they are subjected to 1.3 times the maximum operating load. To simulate 20 years of material fatigue, the blades are then mounted on special test beds and made to vibrate around two million times, before the endurance of the material is again tested with a final static test. The blades are painted white, then shipped to wind farms all over the world.

Advanced Classroom Blades Cardboard Tube for twisted blades Airfoil Blades

Wind Turbine Blade Challenge Students perform experiments and design different wind turbine blades Use simple wind turbine models Test one variable while holding others constant Record performance with a multimeter or other load device Goals: Produce the most voltage, pump the most water, lift the most weight Minimize Drag Maximize LIFT Harness the POWER of the wind!

Questions? Joe Rand KidWind Project joe@kidwind.org