Michael Leunig A putative transcription co-repressor complex

Slides:



Advertisements
Similar presentations
Sex determination in cucumber Anandkumar Surendrarao VC221: Vegetable crop breeding May 10, 2006.
Advertisements

Gene Control in Development
Outline Questions from last lecture? P. 40 questions on Pax6 gene Mechanism of Transcription Activation –Transcription Regulatory elements Comparison between.
Molecular Basis for Relationship between Genotype and Phenotype DNA RNA protein genotype function organism phenotype DNA sequence amino acid sequence transcription.
Flowering Plants Flowering plants (angiosperms) have two growth phases – vegetative growth, production of stems and leaves, occurs at the apical meristem,
MOLECULAR MECHANISMS OF FLOWER DEVELOPMENT KAVITA RAINA.
Shoot meristem self-organization and identity
Evo-Devo: Development in an Evolutionary Context Control of eyespot development on a developing butterfly wing En/Inv expression Dll expression.
Evo-Devo: Evolutionary Development
BHLH - Basic Helix Loop Helix Family Protein Emily Eder HC 70AL - Spring 2005.
Apetala1 Mutant.
Transcription Factors … (TF) Transcription in eukaryote -controlled by trans-acting protein … TF -more complex than in prokaryotes.
Genome Sequencing & App. of DNA Technologies Genomics is a branch of science that focuses on the interactions of sets of genes with the environment. –
Mahmuda Khan. Goal  To obtain training data – sentences from the literature – to validate patterns involving triplets of Arabidopsis thaliana genes,
Activation of a Floral Homeotic Gene in Arabidopsis
Chapters 47 & 21 Animal Development & The Genetic Basis of Development.
Gene regulation. How does DNA make different cells? All cells have a full set of DNA Not all the DNA is expressed in each one Promoters and repressors.
Testing the ABC floral-organ identity model: expression of A and C function genes Objectives: To test the validity of the ABC model for floral organ identity.
Gene Expression. Remember, every cell in your body contains the exact same DNA… …so why does a muscle cell have different structure and function than.
Complexities of Gene Expression Cells have regulated, complex systems –Not all genes are expressed in every cell –Many genes are not expressed all of.
Levels at which eukaryotic gene expression is controlled
Trumpet leaves and microRNA Catherine Kidner CSHL.
Homeotic genes in Drosophila body patterning Genetics Unit, Department of Biochemistry
Chapter 11 Review. Explain the difference between each of the following 1. Operator, promoter -Operator: DNA segment where an inhibitor protein binds.
Federico D. ARIEL 2014 (Coen, 1996) Gene expression regulation in plants.
Regulation of Floral-Organ- Type by SUPERMAN 1.Need for regulators of the organ-identity genes. 2.The Superman mutant phenotype-predicting the role of.
Flower development BL5400. Steps of flower development Apical meristem Inflorescence meristem Flower meristem on which flowers develop.
FLOWER DEVELOPMENT by Ms. Varsha Gaitonde.
Testing the ABC floral-organ identity model: expression of A and C function genes Objectives: To test the validity of the ABC model for floral organ identity.
defined concept of homologous organs
Volume 88, Issue 5, Pages (March 1997)
Activation of a Floral Homeotic Gene in Arabidopsis
Genetic Analysis of Development in Vertebrates
Developmental Genetics
Developmental Genetics
Relationship between Genotype and Phenotype
John F. Golz, Emma J. Keck, Andrew Hudson  Current Biology 
Relationship between Genotype and Phenotype
Homework #2 is due 10/17 Bonus #1 is due 10/24 FrakenFlowers.
At2G37120: A Gene Exploration
Two RNA Binding Proteins, HEN4 and HUA1, Act in the Processing of AGAMOUS Pre- mRNA in Arabidopsis thaliana  Yulan Cheng, Naohiro Kato, Wenming Wang, Junjie.
Even-skipped gene regulation
Volume 6, Issue 3, Pages (May 2013)
Relationship between Genotype and Phenotype
Volume 105, Issue 6, Pages (June 2001)
Volume 6, Issue 5, Pages (September 2013)
Transcriptional regulation of the NPT2 gene by dietary phosphate
Volume 88, Issue 5, Pages (March 1997)
John F. Golz, Emma J. Keck, Andrew Hudson  Current Biology 
WEREWOLF, a MYB-Related Protein in Arabidopsis, Is a Position-Dependent Regulator of Epidermal Cell Patterning  Myeong Min Lee, John Schiefelbein  Cell 
HUA1 and HUA2 Are Two Members of the Floral Homeotic AGAMOUS Pathway
Hox Genes Control the Vertebrate A-P Axis
Volume 10, Issue 7, Pages (July 2017)
The PHANTASTICA Gene Encodes a MYB Transcription Factor Involved in Growth and Dorsoventrality of Lateral Organs in Antirrhinum  Richard Waites, Harinee.
Whorl-Specific Expression of the SUPERMAN Gene of Arabidopsis Is Mediated by cis Elements in the Transcribed Region  Toshiro Ito, Hajime Sakai, Elliot.
Yizhong Wang, Xiaofeng Gu, Wenya Yuan, Robert J. Schmitz, Yuehui He 
Volume 12, Issue 17, Pages (September 2002)
Transvection.
Arabidopsis NF-YCs Mediate the Light-Controlled Hypocotyl Elongation via Modulating Histone Acetylation  Yang Tang, Xuncheng Liu, Xu Liu, Yuge Li, Keqiang.
Relationship between Genotype and Phenotype
FoxB protein binds directly to the cis-regulatory element of the Bra gene. FoxB protein binds directly to the cis-regulatory element of the Bra gene. (A)
A Homolog of NO APICAL MERISTEM Is an Immediate Target of the Floral Homeotic Genes APETALA3/PISTILLATA  Robert W.M Sablowski, Elliot M Meyerowitz  Cell 
Relationship between Genotype and Phenotype
SUR-8, a Conserved Ras-Binding Protein with Leucine-Rich Repeats, Positively Regulates Ras-Mediated Signaling in C. elegans  Derek S Sieburth, Qun Sun,
Relationship between Genotype and Phenotype
Volume 15, Issue 1, Pages (July 2008)
Doris Wagner, Elliot M. Meyerowitz  Current Biology 
C-Lineage-Dependent CRC Expression and Nectary Development in Arabidopsis and Petunia. C-Lineage-Dependent CRC Expression and Nectary Development in Arabidopsis.
Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 Module by the Homeodomain Proteins PENNYWISE and POUND- FOOLISH in Arabidopsis 
Volume 11, Issue 7, Pages (July 2018)
Presentation transcript:

Michael Leunig A putative transcription co-repressor complex regulates floral organ identity and shape by Zhongchi Liu, University of Maryland, USA Dr. Seuss Gary Larson Michael Leunig

Floral homeotic gene AGAMOUS (AG) specifies stamen and carpel identity WT whorl 1 whorl 2 whorl 3 whorl 4 ag-1 AG expression in WT ag-1 Yanofsky et al., Nature, 1990; Drews et al., Cell, 1991

leunig (lug) mutation results in ectopic expression of AG wild-type lug lug-1 H S X B E3 GUS 2.98kb E2 Liu and Meyerowitz, Development (1995); Busch et al., Science (1999); Deyholos and Sieburth, Plant Cell (2000)

Structural Similarity to Transcription Co-repressors 1 931 LUG (Arabidopsis) Q-rich (89-184, 449-470) LUFS 7 WD 1 787 LUH (Arabidopsis) Q-rich LUFS 7 WD 1 706 Tup1 (Yeast) Ssn6 Binding Q-rich (97-118, 181-198) 7 WD 1 716 Groucho (Drosophila) Q-rich Ser-pro rich 7 WD Conner and Liu, PNAS, (2000)

The repression of a-cell-specific genes in S. cerevisiae a cells Tup1 Ssn6 a-cell specific genes a 2 MCM1 The repression of AG in first two whorls of Arabidopsis flower LUG ? ? AG exon ? AG second intron

seuss (seu) resembles lug and enhances lug lug seu

AG mRNA expression WT lug seu

SEU encodes a Q-rich protein with a conserved dimerization domain Q-rich domain LIM Interacting domain Frameshift (seu-2) Q to stop (seu-1) 1 877 SEUSS NLS 1 933 Rice EST 81% 1 748 Arabidopsis Homolog 55% 1 384 Zebra fish LIM domain- binding factor (Ldb1) 22% LID 1 375 Mouse Ldb1 21% LID

LUG LUFS domain interacts with full length SEU LUG-DB Constructs LUFS LUFS Q-rich (89-184, 449-470) LUFS Q-rich (89-184, 449-470) 7 WD Q-rich (89-184, 449-470) 7 WD

1. 2. 3. 4. 5. 6. Reporters 5x Gal4UAS CaMV 35S GUS 3’NOS LUC GAL4DB LUG SEU Effectors 3. 4. 5. 6. 2 4 6 8 10 12 14 16 18 GUS/LUC LUG-BD (1+2+4) SEU-BD (1+2+5) SEU No Effector 1+ 2 GAL4BD 1+2+3 1+2+ effector

LUG SEU ? AG exon ? AG second intron

larson-1 (lsn-1) enhances lug at 20oC ap2-2 lsn-1 lug-8 lsn-1 lug-8 lsn-1 lug-8

lsn-1 is temperature-sensitive lsn-1 at 20 oC lsn-1 at 29 oC

Ectopic AG expression in lsn-1 at 29oC AG second intron H S X B E3 GUS 2.98kb E2

LSN encodes a BEL1-like homeodomain protein 575 349 414 100% lsn-1 P>L lsn-2 R>L 173 228 295 391 456 85% BEL1 610 263 350 193 SKY domain BEL domain Homeodomain

LSN Belongs to The TALE Superclass Homeodomain Protein Helix 1 Helix 2 Helix 3 Cons. RELSKKRKRGKLPKEATQILRAWWPQHLKNPYPSEEEKEALAEETGLTLKQINNWFINARRRHWKPMIDMQ IRO VTYDLAARRKNATRESTSTLKAWLNEHKKNPYPTKGEKIMLAIITKMTLTQVSTWFANARRRLKKENKMTW PBC REQSRRRKRRNFNKQATEILNEYFYSHLSNPYPSEEAKEELAKKCGITVSQVSNWFGNKRIRYKKNIGKFQ KNOX LEFSKKKKKGKLPKEARQQLLEWWKGHYKWPYPTESDKISLAESTGLDPKQINNWFINQRKRHWKPSEHMQ CUP RRKQN-SGRSNLPKETVSILNTWLLNHLNNPYPTQQEKRELLIKTGLTKIQLSNWFINVRRRKIFSDYYTL TGIF GSGKR-RRRGNLPKESVQILRDWLYEHRYNAYPSEQEKALLSQQTHLSTLQVCNWFINARRRLLPDMLRKD MEIS KDKKRQKKRGIFPKVATNIMRAWLFQHLTHPYPSEEQKKQLAQDTGLTILQVNNWFINARRRIVQPMIDQS M-ATYP VVSPAVGCRNLSEDLPAYHMRKHFLHTLDNPYPTQEEKEGLVRLTNESTARVGSWFINARRRSGWSHILKK BEL HPQHAWRPQRGLPERSVSVLRAWLFEHFLHPYPKDSDKHMLARQTGLSRNQVSNWFINARVRLWKPMVEEM Classes L L LSN HHAPVWRPHRGLPERAVTVLRAWLFDHFLHPYPTDTDKLMLAKQTGLSRNQVSNWFINARVRVWKPMVEEI BELL1 ---HPWRPQRGLPERAVTTLRAWLFEHFLHPYPSDVDKHILARQTGLSRSQVSNWFINARVRLWKPMIEEM ATH1 KNHQIWRPQRGLPEKSVSVLRNWMFQNFLHPYPKDSEKHLLAIRSGLTRSQVSNWFINARVRLWKPMIEEM AAD51349 ---EAWRPQRGLPERSVNILRAWLFEHFLHPYPSDADKHLLARQTGLSRNQVSNWFINARVRLWKPMVEEM AAF18625 HHSNAWRPQRGLPEKAVSVLRSWLFEHFLHPYPRDLDKVMLAKQTGLTKSQVSNWFINARVRMWKPLVEEL AAK43834 ---EAWRPQRGLPERSVNILRAWLFEHFLNPYPSDADKHLLARQTGLSRNQVSNWFINARVRLWKPMVEEM AAK43836 PSNNAWRPQRGLPERAVSVLRAWLFEHFLHPYPKDSDKHMLAKQTGLTRSQVSNWFINARVRLWKPMVEEM AAL10487 ---HTWRPQRGLPDSSVLVLRAWLFEHFLHPYPKDSDKIMLARQTGLSRGQVSNWFINARVRLWKPMVEEM AAL32623 ----AWRPQRGLPENSVSILRAWLFEHFLHPYPKESEKIMLSKQTGLSKNQVANWFINARVRLWKPMIEEM NP180366 QQQHIWRPQRGLPERAVAVLRAWLFDHFLHPYPTDSDKQMLATQTGLSRNQVSNWFINARVRLWKPMVEEI NP195187 ---QAWRPQRGLPENSVLILRAWLFEHFLHPYPKDSDKIMLARQTGLSRGQVSNWFINARVRLWKPMVEEI ***:****: :* :** *:*::****** * :* :*: ::**:*:**:*********:****:* Arabidopsis Homologues

Structure of Hox B1-Pbx1 heterodimer bound to DNA Piper,D.E., Batchelor,A.H., Chang,C.P.,Cleary,M.L. and Wolberger,C. Cell 96 (4), 587-597 (1999)

Gal2p lacZ Gal7p ADE2 Gal1p HIS3 DB AD pJ69-4A yeast host LUG LSN D81 (three reporters) Gal2p lacZ LUG + Gal7p ADE2 + LSN Gal1p HIS3 + + LUG LSN D3 575 349 414 HD 81 pVA3 pTD1 LUG SEU

Binding of LSN to AG second intron 2985 AG GST-LSN GST

In whorls 1 and 2 of a flower A proposed model on how LUG and SEU repress AG In whorls 1 and 2 of a flower LUG SEU AP1? AG exon LSN AG second intron

seu and lug mutants develop narrow floral organs

SEU and LUG regulate organ shape independently of AG ag-1 seu-1 ag-1 ag-1 seu-1 lug-1 seu-1 lug-1 ag-1 seu-1 lug-1

The narrow organ shape may result from a loss of organ polarity ag-1 ag-1 seu-1 lug-1 PROBE PHABULOSA (Adaxial) YABBY1 (Abaxial) See poster # 14 by Robert Franks

In whorls 1 and 2 of a flower Organ shape LUG In whorls 1 and 2 of a flower SEU ? X PHB/YAB Floral organ identity LUG SEU AP1? AG exon LSN AG second intron

ACKNOWLEDGEMENT Postdoctoral fellows Joann A. Conner Robert G. Franks V.V. Sridhar Graduate students Alex Xiaozhong Bao Anandkumar Surendrarao Jayashree Sitaraman Black Chunxin Wang Joshua Levin, Syngenta John Bowman, UC Davis Steve Henikoff, FHCRC Our work is funded by USDA, DOE, NSF and a NIH postdoctoral fellowship to B. Franks