BIOELECTRONICS 1 Lec8: Operational Amplifiers and Applications By

Slides:



Advertisements
Similar presentations
Lecture 2 Operational Amplifiers
Advertisements

Lecture 3 Operational Amplifiers—Non-ideal behavior
Operational Amplifier
Op-Amp- An active circuit element designed to perform mathematical operations of addition, subtraction, multiplication, division, differentiation and.
Chapter 11 Operational Amplifiers and Applications
Introduction to Op Amps
Basic Block Diagram of Op-Amp
Introduction to Op Amp Circuits ELEC 121. April 2004ELEC 121 Op Amps2 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain.
Analog Electronics Lecture 5.
© 2012 Pearson Education. Upper Saddle River, NJ, All rights reserved. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth.
Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2010 by Oxford University Press, Inc. C H A P T E R 02 Operational Amplifiers.
10/11/2015 Operational Amplifier Characterization Chapter 3.
Module 4 Operational Amplifier
OPERATIONAL AMPLIFIERS. BASIC OP-AMP Symbol and Terminals A standard operational amplifier (op-amp) has; V out is the output voltage, V+ is the non-inverting.
UNIT – III : OP-AMPS AND APPLICATIONS
Passive filters Use Passive components (R, L, C) Does not provide gain
1 1.6 Op-Amp Basics Basic Op-Amp Op-amp equivalent circuit Practical (R i = high, R o = small)Ideal (R i =∞, R o = 0)
Operational Amplifiers Op Amps – a useful building block K. El-Ayat 11.
Amplifiers. BASIC AMPLIFIER CONCEPTS Ideally, an amplifier produces an output signal with identical waveshape as the input signal, but with a larger.
Applications of OP-AMP. Introduction Operational amplifier using IC's is inexpensive, versatile and easy to use. For this reason they are used not only.
OPERATIONAL AMPLIFIERS + - Presented by D.Satishkumar Asst. Professor, Electrical & Electronics Engineering
CHAPTER 20 OPERATIONAL AMPLIFIERS (OP-AMPS). Introduction to operational amplifiers Symbol and Terminals.
Shantilal Shah Government Engineering College Bhavnagar Electrical Engg. Department.
Module 2 Operational Amplifier Basics
ARUN MUCHHALA ENGINEERING COLLEGE- DHARI [ ] ANALOG ELECTRONICS Prajapati Omprakash rd ELECTRICAL DEPARTMENT ANALOG ELECTRONICS.
Operational Amplifier
OPERATIONAL AMPLIFIER
ELECTRIC CIRCUITS ECSE-2010 Spring 2003 Class 9
Ch7 Operational Amplifiers and Op Amp Circuits
BIOELECTRONICS 1 Lec7: CHAPTER 3 Bio-Amplifiers By
Basic Block Diagram of Op-Amp
BIOELECTRONICS 1 Lec 9: Op Amp Applications By
Chapter 10: Operational Amplifiers
PUSAT PENGAJIAN KEJURUTERAAN KOMPUTER & PERHUBUNGAN
Open book, open notes, bring a calculator
1.6 Op-Amp Basics Basic Op-Amp Practical (Ri = high , Ro = small)
s.p.b. Patel engineering collage
Operational Amplifier
ELG4135: Electronics III (Fall 2005)
ECE 3302 Fundamentals of Electrical Engineering
Analogue Electronics Circuit II EKT 214/4
Analogue Electronic 2 EMT 212
Feedback No feedback : Open loop (used in comparators)
Electronic Devices Ninth Edition Floyd Chapter 12.
Introduction Equivalent circuit model of op-amp
Examples of Negative Feedback Applications: A) Inverting Amplifiers
Subject : Analog Electronics
Differential Op - Amplifier TIM. 1 Introduction 2 Differential Amplifier: 2.1 Input Resistances: 2.2 Differential Gain: 2.3 Common Mode Input: 2.4 Common.
Operational Amplifiers
OP-AMPS: basics & Inverting-amplifier
Department of CNET Electronic Circuit II
OSCILLATOR & Operational Amplifier
The Ideal Op Amp Inverting and non-Inverting configurations
Industrial Electronics
تقویت کننده های عملیاتی
Everything You Ever Wanted to Know About Filters*
Ch. 5 – Operational Amplifiers
Lesson 11: Transducer Electrical Interfaces
The Ideal Op Amp Inverting and non-Inverting configurations
Operational Amplifier (Op-Amp)-μA741
Passive Components Rayat Shikshan Sanstha’s
Medical electronics II
Analog Design for the Digital World
Ch. 5 – Operational Amplifiers
Department of CNET Electronic Circuit II
Passive Components Rayat Shikshan Sanstha’s
Chapter 5 OUTLINE Op-Amp from 2-Port Blocks
Ch. 5 – Operational Amplifiers
Ch. 5 – Operational Amplifiers
Operational Amplifiers
Presentation transcript:

BIOELECTRONICS 1 Lec8: Operational Amplifiers and Applications By 6 October University Faculty of Applied Medical Sciences Department of Biomedical equipment and systems Lec8: Operational Amplifiers and Applications   By Dr. Eng. Hani Kasban Mahmoud 2017 BIOELECTRONICS 1

Differential Amplifier Model: Basic Represented by: A = open-circuit voltage gain vid = (v+-v-) = differential input signal voltage Rid = amplifier input resistance Ro = amplifier output resistance The signal developed at the amplifier output is in phase with the voltage applied at the + input (non-inverting) terminal and 180° out of phase with that applied at the - input (inverting) terminal.

LM741 Operational Amplifier: Circuit Architecture Current Mirrors

Ideal Operational Amplifier The “ideal” op amp is a special case of the ideal differential amplifier with infinite gain, infinite Rid and zero Ro . and If A is infinite, vid is zero for any finite output voltage. Infinite input resistance Rid forces input currents i+ and i- to be zero. The ideal op amp operates with the following assumptions: It has infinite common-mode rejection, power supply rejection, open-loop bandwidth, output voltage range, output current capability and slew rate It also has zero output resistance, input-bias currents, input-offset current, and input-offset voltage.

The Inverting Amplifier: Configuration The positive input is grounded. A “feedback network” composed of resistors R1 and R2 is connected between the inverting input, signal source and amplifier output node, respectively.

Inverting Amplifier:Voltage Gain The negative voltage gain implies that there is a 1800 phase shift between both dc and sinusoidal input and output signals. The gain magnitude can be greater than 1 if R2 > R1 The gain magnitude can be less than 1 if R1 > R2 The inverting input of the op amp is at ground potential (although it is not connected directly to ground) and is said to be at virtual ground. But is= i2 and v- = 0 (since vid= v+ - v-= 0) and

Inverting Amplifier: Input and Output Resistances Rout is found by applying a test current (or voltage) source to the amplifier output and determining the voltage (or current) after turning off all independent sources. Hence, vs = 0 But i1=i2 Since v- = 0, i1=0. Therefore vx = 0 irrespective of the value of ix .

Inverting Amplifier: Example Problem: Design an inverting amplifier Given Data: Av= 20 dB, Rin = 20kW, Assumptions: Ideal op amp Analysis: Input resistance is controlled by R1 and voltage gain is set by R2 / R1. and Av = -100 A minus sign is added since the amplifier is inverting.

The Non-inverting Amplifier: Configuration The input signal is applied to the non-inverting input terminal. A portion of the output signal is fed back to the negative input terminal. Analysis is done by relating the voltage at v1 to input voltage vs and output voltage vo .

Non-inverting Amplifier: Voltage Gain, Input Resistance and Output Resistance Since i-=0 and But vid =0 Since i+=0 Rout is found by applying a test current source to the amplifier output after setting vs = 0. It is identical to the output resistance of the inverting amplifier i.e. Rout = 0.

Non-inverting Amplifier: Example Problem: Determine the output voltage and current for the given non-inverting amplifier. Given Data: R1= 3kW, R2 = 43kW, vs= +0.1 V Assumptions: Ideal op amp Analysis: Since i-=0,

Finite Open-loop Gain and Gain Error Ab is called loop gain. For Ab >>1, This is the “ideal” voltage gain of the amplifier. If Ab is not >>1, there will be “Gain Error”. is called the feedback factor.

Gain Error Gain Error is given by GE = (ideal gain) - (actual gain) For the non-inverting amplifier, Gain error is also expressed as a fractional or percentage error.

Gain Error: Example Problem: Find ideal and actual gain and gain error in percent Given data: Closed-loop gain of 100,000, open-loop gain of 1,000,000. Approach: The amplifier is designed to give ideal gain and deviations from the ideal case have to be determined. Hence, . Note: R1 and R2 aren’t designed to compensate for the finite open-loop gain of the amplifier. Analysis:

Output Voltage and Current Limits Practical op amps have limited output voltage and current ranges. Voltage: Usually limited to a few volts less than power supply span. Current: Limited by additional circuits (to limit power dissipation or protect against accidental short circuits). The current limit is frequently specified in terms of the minimum load resistance that the amplifier can drive with a given output voltage swing. Eg: For the inverting amplifier,

Many thanks Dr. Eng. Hani Kasban Questions?????