Textbook Detection System With Radio-Frequency Identification

Slides:



Advertisements
Similar presentations
1 Foundation Course Transmitters & Receivers EKRS Karl Davies.
Advertisements

Module 4: Analog programming blocks. Module Objectives Analyze a control task that uses analog inputs. Connect a potentiometer to LOGO! controller and.
The Enforcer Laura Celentano Glenn Ramsey Michael Szalkowski.
2 Way FM Car Starter Dan Owens April 12, 2005 Instructor: Dr. Pao-Lo Liu Department of Electrical Engineering University at Buffalo Course Requirement.
How to Build a Low-Cost, Extended-Range RFID Skimmer Ilan Kirschenbaum & Avishai Wool 15 th Usenix Security Symposium,2006 Kishore Padma Raju.
Circuits Series and Parallel. Series Circuits Example: A 6.00 Ω resistor and a 3.00 Ω resistor are connected in series with a 12.0 V battery. Determine.
Energy Smart Room GROUP 9 PRESENTERS DEMO DATE SPECIAL THANKS TO ADVISOR PRESENTERS Thursday April 19, 2007 Department of Electrical and Systems Engineering.
Dual-frequency Antenna Design for RFID Application
Chip tag A radio-frequency identification system uses tags readers send a signal to the tag and read its response RFID tags can be either passive active.
Module 4: Analog programming blocks. Module Objectives Analyze a control task that uses analog inputs. Connect a potentiometer to LOGO! controller and.
Wireless Sensor Monitoring Group Members: Daniel Eke (COMPE) Brian Reilly (ECE) Steven Shih (ECE) Sponsored by:
Disc Golf Disc Locator Trevor Henry Project Advisor: John Spinelli.
ECE 477 Design Review Team 4  Spring 2008 Zach Dicklin Amy Ritter Ian Bacon Eric Yee.
RFID Payment Terminal Presented by: Rohit Kale. Introduction RFID: an automatic identification method, relying on storing and remotely retrieving data.
M211_50-Ohm-Ant_V11_RBt -1 Philips Semiconductors 50 Ohm matched antenna Proximity Antenna Training for MHz.
How to Build a Low-Cost, Extended-Range RFID Skimmer Ilan Kirschenbaum & Avishai Wool 15 th Usenix Security Symposium, 2006 * Presented by Justin Miller.
Ph.D. Candidate: Yunlei Li Advisor: Jin Liu 9/10/03
Smart Mattress Bryan Kuo, Priyen Patel, Dev Shah, Xitij Shah, Tim Stamm Georgia Institute of Technology October 23, 2008.
Voice Controlled Home Automation System Group 13 Zhe Gong Hongchuan Li.
Solar Powered LED Blinds Group 28: Austin Estes and Kerr Oliva TA: Katherine O’Kane.
SmartCup – Team 42 Harington Lee, Chirag Patil, Arjun Sharma 1.
Portable BCI Stimulator Final Presentation Group: 17 Bonnie Chen, Siyuan Wu, Randy Lefkowitz TA: Ryan May ECE 445 Monday, April 29 th, 2013.
Simple Water Level Controller Circuit with Microcontroller and Alarm.
Multipurpose Keychain ECE 445 Senior Design Junting Lou Yaming Tang Lida Zhu TA: Rajarshi Roy Project No. 11 Fall 2012.
Wireless Smoke Detector System Andrew Chiu Chi-Ming Wang ECE 445.
Sound Source Location Stand Group 72: Hiroshi Fujii Chase Zhou Bill Wang TA: Katherine O’Kane.
Solar Patio Umbrella Final Presentation May 3 rd, 2016 Team #37 ECE 445 – Spring 2016.
Bike Rack Availability Tracking System Group 26: Sam Luo, Jason Pao, Jason Wang.
Electric Air Ukulele Ivan Setiawan (setiawa2) Satyo Iswara (iswara2) ECE 445 Senior Design Spring 2012 Team #32 TA: Jane Tu.
ISA CLICK CONTROL #38 – FALL 2014 ERIC BRUNNGRABER DRAKE ISABIRYE.
SMART CART Group 20 Ciju Francis, Tom Rosengrant.
Deep Touch Pressure Abdomen Belt Group 32 Kevin Rathbun & Luke Fleming & Chang-O Pyo ECE 445 Senior Design April 28, 2015.
ADVANCED WATER LEVEL CONTROLLER
Easy Programmable Stove ECE445 Senior Design Spring 2013 Group Members: Benjamin Chng Ardy Winoto Cheng Han Lee Professor: Paul Scott Carney TA: Dennis.
Power Budget Automation System Team #40 Hai Vo, Ho Chuen Tsang, Vi Tran ECE 445 Senior Design April 30 st, 2013.
EE140 Final Project Members: Jason Su Roberto Bandeira Wenpeng Wang.
Modular Swimming Pace Aid ECE 445 Group Members: Igor Fedorov, Ryan Cook, Michael Chan Professor Carney (TA Ryan May)
The wireless charge will convert the RF signal at 900MHz frequencies into a DC signal,and then store the power into a mobile battery.
Ashan Perera Senior Design Project - Electronic System for Remote Water Quality Monitoring.
Emotional Intelligence Vivian Tseng, Matt Palmer, Jonathan Fouk Group #41.
16 Step Analog/Digital Synthesizer
Application Case Study Christmas Lights Controller
ARDUINO BASED UNDERGROUND CABLE FAULT DETECTION
3506-D WEST LAKE CENTER DRIVE,
Group 29 JUN SUNG LEE, JAE HYUN KANG
Smart Parking Application
Prototyping with Microcontrollers and Sensors
WEBENCH® Coil Designer
Arduino Based Industrial appliances control system by decoding dual tone multi frequency signals on GSM / CDMA network. Submitted by:
Home automation using Arduino & ‘PIR sensor’
ECE 445 Smart Window Responding System
(4) Filters.
Automatic human detector garbage can.
Chapter 11: Inter-Integrated Circuit (I2C) Interface
WIRELESS ENERGY MEASUREMENT SYSTEM
App controlled solar powered street lamp
‘SONAR’ using Arduino & ultrasonic distance sensor
RAILWAY TRACK SNAP NOTIFICATION
Directional Driver Hazard Advisory System
Remote Controlled Smart Socket
RC Boat Power and Signal Level Indicator
Portable Battleship Display
Automatic Cloth Folding Machine
Inductive Charging Case
Real-Time Free Throw Feedback Device
Digital Theremin with LED
General Licensing Class
ECE 477 Final Presentation Team 2 Spring 2012
Hardware Graduation Project (2) Seminar
HOME AUTOMATION SYSTEM BLUETOOTH BASED.  INTRODUCTION  PROBLEM STATEMENT  OBJECTIVES  BLOCK DIAGRAM  CIRCUIT DIAGRAM  METHODOLOGY  APPLICATIONS.
Presentation transcript:

Textbook Detection System With Radio-Frequency Identification Group 7 TA: Jose Sanchez Vicarte Members: Xiaohao Wang & Xiaosheng Wu & Zhao Weng

Outline Introduction Overview Modular design Software Conclusion and future work

Introduction Use radio-frequency identification (RFID) to keep track of textbooks in a student’s backpack Android application to show a checklist of missing textbooks

Outline Introduction Overview System overview Block diagram Physical design Modular design Software Conclusion and future work

System Overview Hardware: Lithium Ion battery Protection circuit Temperature Sensor Bluetooth module RFID antenna and reader Microcontroller LED and buttons Software: Bluetooth connection with microcontroller Android application

Block Diagram Battery Protection Circuit Power Analog Signal Digital Signal v Power module Bluetooth module Control module Three LEDs Temperature Sensor Micro-controller Antenna Circuit RFID Reader Two Buttons Bluetooth Module RFID module Voltage Regulator Switch

Physical Design RFID tag RFID antenna Bluetooth module Power module Control module RFID module Bluetooth module RFID tag RFID tag

Outline Introduction Overview Modular design Power module Control module RFID module Bluetooth module Software Conclusion and future work

Outline Introduction Overview Modular design Power module Control module RFID module Bluetooth module Software Conclusion and future work

Power Module Protection circuit 1A fuse Undervoltage lockout (UVLO) Temperature protection Regulator Output 3.3V when Enable is HIGH Output 0V when Enable is LOW Off-board temperature sensor Enable Temperature input

Protection circuit Enable output is 0V when DC_IN is less than 3.3V Enable signal stays at 0V until DC_IN rises above 3.5V Enable output is 0V when temperature is higher than 70°C (~1.23V)

Power Module Breadboard Verification Tested on breadboard with oscilloscope and function generator Input sine wave with 2V 𝑉 𝑝−𝑝 , 3.7V offset Enable output drops to 0V when input is below 3.3V Enable output stays at 0V until input rises above 3.5V Voltage regulator output constant 3.3V when enable signal is HIGH

Power Module PCB Verification Results different because we can’t find same resistor values Enable signal is 0V when input drops below ~3.38V Enable signal stays at 0V until input rises above ~3.54V Enable signal is 0V when TEMP input is above ~1.23V (~70.5°C) Voltage regulator output start to fluctuate around threshold Cause microcontroller to restart randomly

Outline Introduction Overview Modular design Power module Control module RFID module Bluetooth module Software Conclusion and future work

Control Module ATmega328 microcontroller LEDs represent system status Receive data from the RFID module Send data to the Bluetooth module Turn on/off the antenna circuit with two buttons Microcontroller circuit

SPI UART Battery Protection Circuit Power Analog Signal Digital Signal v Power module Bluetooth module Control module Three LEDs Temperature Sensor Micro-controller Antenna Circuit RFID Reader Two Buttons Bluetooth Module RFID module Voltage Regulator Switch SPI UART

Outline Introduction Overview Modular design Power module Control module RFID module Bluetooth module Software Conclusion and future work

RFID Module Receive tag IDs when tag is placed near antenna Send tag data to the microcontroller Detection area: 15cm × 5cm Detection range: 3cm to 5cm

RFID Reader MFRC522 RFID reader Operate at 13.56MHz (HF) Receive tag IDs from the antenna circuit Transmit tag IDs to the control module Antenna circuit has no power when turned off

RFID Antenna Circuit Follow NXP application note AN1445 for antenna design Use given values for EMC filter and receiver circuit Antenna size: 15cm × 5cm Measure antenna parameters with network analyzer Tune matching circuit so input impedance is 50 Ω Receiver circuit Matching circuit Antenna EMC filter

RFID Antenna Transmitter Circuit Calculations Measured antenna parameters: Inductance: 3.88μH Resistance: 5.5Ω Capacitance: ~1pF 𝑅 𝑄 =0.5( 𝜔∙ 𝐿 𝑎 35 − 𝑅 𝑎 )≈3Ω (1) 𝑅 𝑝𝑎 = (𝜔∙ 𝐿 𝑎 ) 2 𝑅 𝑎 +2 𝑅 𝑄 ≈9502Ω (2) 𝐶 1 ≈ 1 𝜔( 𝑅 𝑡𝑟 ∙ 𝑅 𝑝𝑎 4 + 𝑋 𝑡𝑟 2 ) ≈17𝑝𝐹 (5) 𝑅 𝑡𝑟 = 𝑅 𝑚𝑎𝑡𝑐ℎ (1− 𝜔 2 𝐿 0 𝐶 0 ) 2 + (𝜔 𝑅 𝑚𝑎𝑡𝑐ℎ 2 𝐶 0 ) 2 ≈217Ω (3) 𝑋 𝑡𝑟 =2𝜔 𝐿 0 1− 𝜔 2 𝐿 0 𝐶 0 − 𝑅 𝑚𝑎𝑡𝑐ℎ 2 4 𝐶 0 (1− 𝜔 2 𝐿 0 𝐶 0 ) 2 + (𝜔 𝑅 𝑚𝑎𝑡𝑐ℎ 2 𝐶 0 ) 2 ≈−58Ω (4) 𝐶 2 ≈ 1 𝜔 2 𝐿 𝑎 2 − 1 𝜔 𝑅 𝑡𝑟 ∙ 𝑅 𝑝𝑎 4 ≈55𝑝𝐹 (6)

RFID Antenna Circuit Tuning Adjust 𝐶 1 and 𝐶 2 for tuning Final values: 𝐶 1 =13𝑝𝐹 𝐶 2 =39𝑝𝐹 𝑅 𝑄 =3Ω Results: Impedance about 50Ω

RFID Antenna Receiver Circuit Use low capacitance probe and oscilloscope to measure peak-to-peak voltage across 𝐶 0 Calculate resistor 𝑅 2 Receiver circuit

RFID Antenna Receiver Circuit Use low capacitance probe and oscilloscope to measure peak-to-peak voltage across 𝐶 0 𝑈 𝐶0 ≈4.6𝑉 Frequency about 13.6MHz 𝑅 2 = 𝑅 1 ∙ 𝑈 𝐶0 𝑈 𝑅𝑋 −1 =1𝑘∙ 4.6 1 −1 =3.6𝑘Ω (7) Use 4kΩ resistor 3.5cm to 4.5cm range for version 1 5cm to 7cm range for version 2

Outline Introduction Overview Modular design Power module Control module RFID module Bluetooth module Software Conclusion and future work

Bluetooth Module JY-MCU HC-06 Transmit data with 9600 baud 80% of time Connect to Android application

Outline Introduction Overview Modular design Software Microcontroller software Android application Conclusion and future work

Microcontroller software Initialize SPI connection Initialize UART connection Set up LEDs and buttons Modify RFID chip registers Transfer the tag ID to the Bluetooth module “40 81 90 7E”

Android Application Add tag ID and book name pairs for initialization Connect to the Bluetooth module Automatically update a check list of missing books

Outline Introduction Overview Modular design Software Conclusion and future work

Conclusion Improved detection area and distance with customized RFID module Microcontroller able to send RFID data to Bluetooth Android application as user interface Microcontroller restart randomly near threshold Android application not fully automated

Future Work Use force sensor to automatically turn on/off RFID antenna Automatically initialize tag IDs in the Android application Recommend books based on Calendar Use separate regulator for different modules

Questions?

Thank you!

UVLO UVLO circuit Dropping equivalent Rising equivalent Want to create 200mV hysteresis to prevent circuit from switching on and off rapidly When dropping, 𝑅 3 parallel with 𝑅 1 , decreasing Vin needed to reach 2.5V When rising, 𝑅 3 parallel with 𝑅 2 , increasing Vin needed to reach 2.5V

RFID Antenna Antenna size: 5cm × 15cm Require two antennas coils Recommended antenna inductance: 0.3μH to 3μH Three-turn antenna inductance is too high Choose two-turn antenna Smith chart of a single coil two-turn antenna