COMPSCI 290.2: Computer Security

Slides:



Advertisements
Similar presentations
Quantum Cryptography Nick Papanikolaou Third Year CSE Student
Advertisements

Slide 1 Introduction to Quantum Cryptography Nick Papanikolaou
Use of Time as a Quantum Key By Caleb Parks and Dr. Khalil Dajani.
Quantum Computing and Qbit Cryptography
Quantum Cryptography ( EECS 598 Presentation) by Amit Marathe.
Great Theoretical Ideas in Computer Science.
Quantum Key Distribution (QKD) John A Clark Dept. of Computer Science University of York, UK
QUANTUM CRYPTOGRAPHY Narayana D Kashyap Security through Uncertainty CS 265 Spring 2003.
Introduction to Quantum Cryptography Dr. Janusz Kowalik IEEE talk Seattle, February 9,2005.
CNS2009handout 21 :: quantum cryptography1 ELEC5616 computer and network security matt barrie
A Brief Introduction to Quantum Computation 1 Melanie Mitchell Portland State University 1 This talk is based on the following paper: E. Rieffel & W. Polak,
Quantum Cryptography Marshall Roth March 9, 2007.
Matthew Guidry. The Fundamentals of Cryptography  One of the fundamentals of cryptography is that keys selected for various protocols that are computationally.
Quantum Computing Joseph Stelmach.
Quantum Key Establishment Wade Trappe. Talk Overview Quantum Demo Quantum Key Establishment.
Quantum Cryptography Prafulla Basavaraja CS 265 – Spring 2005.
Shor’s Algorithm Osama Awwad Department of Computer Science Western Michigan University July 12, 2015.
Single Photon Quantum Encryption Rob Grove April 25, 2005.
CRYPTOGRAPHY Lecture 10 Quantum Cryptography. Quantum Computers for Cryptanalysis Nobody understands quantum theory. - Richard Feynman, Nobel prize-winning.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography.
Quantum computing Alex Karassev. Quantum Computer Quantum computer uses properties of elementary particle that are predicted by quantum mechanics Usual.
CS4600/5600 Biometrics and Cryptography UTC/CSE
Gagan Deep Singh GTBIT (IT) August 29,2009.
Quantum Computing 101: How to Crack RSA Walter C. Daugherity Department of Computer Science Texas A&M University
An Introduction to Quantum Phenomena and their Effect on Computing Peter Shoemaker MSCS Candidate March 7 th, 2003.
Quantum Cryptography. Cryptography  Art of writing messages so that no one other than intended receiver can read it.  Encryption – Performing mathematical.
Quantum cryptography CS415 Biometrics and Cryptography UTC/CSE.
Quantum Cryptoanalysis and Quantum Cryptography (An introduction)
Quantum Cryptography Zelam Ngo, David McGrogan. Motivation Age of Information Information is valuable Protecting that Information.
CS555Topic 251 Cryptography CS 555 Topic 25: Quantum Crpytography.
Quantum Cryptography Slides based in part on “A talk on quantum cryptography or how Alice outwits Eve,” by Samuel Lomonaco Jr. and “Quantum Computing”
Quantum Mechanics1 Schrodinger’s Cat. Quantum Mechanics2 A particular quantum state, completely described by enough quantum numbers, is called a state.
Quantum Computers By Andreas Stanescu Jay Shaffstall.
Nawaf M Albadia
Quantum computing, teleportation, cryptography Computing Teleportation Cryptography.
Quantum Computing Michael Larson. The Quantum Computer Quantum computers, like all computers, are machines that perform calculations upon data. Quantum.
FNI 1H Quantum Mechanics 1 Quantum Mechanics I don't like it, and I'm sorry I ever had anything to do with it. -- Erwin Schrodinger talking about Quantum.
28 April 2005 CS588 Spring 2005 David Evans Phun with Photons.
Page 1 COMPSCI 290.2: Computer Security “Quantum Cryptography” including Quantum Communication Quantum Computing.
IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.
Quantum Cryptography and Quantum Computing. Cryptography is about a)manipulating information b)transmitting information c)storing information.
An Introduction to Quantum Computation Sandy Irani Department of Computer Science University of California, Irvine.
1 Diffie-Hellman (Key Exchange) Protocol Rocky K. C. Chang 9 February 2007.
1 An Introduction to Quantum Computing Sabeen Faridi Ph 70 October 23, 2007.
Quantum Computing: An Introduction
Beginner’s Guide to Quantum Computing Graduate Seminar Presentation Oct. 5, 2007.
15-853Page 1 COMPSCI 290.2: Computer Security “Quantum Cryptography” Including Quantum Communication Quantum Computing.
Encryption and Integrity
J. Miranda University of Ottawa 21 November 2003
Paul M. Dooley Tamer Tayea Wenlin Zhou Ian M. Johson Joshua Tarlow
Quantum Information Promises new insights Anthony J
Public-key Cryptography
QUANTUM CRYPTOGRAPHY.
Quantum Cryptography Quantum Computing
Cryptography, part 2.
Quantum Cryptography Arjun Vinod S3 EC Roll No:17.
Quantum Key Distribution
Q Jeff Kinne.
Quantum Cryptography Alok.T.J EC 11.
Diffie-Hellman Key-Exchange Algorithm
Brandin L Claar CSE 597E 5 December 2001
Lecture 14: Blocking and Catching Photons Background
Quantum Cryptography Scott Roberts CSE /01/2001.
Cryptography and Quantum Computing
Quantum Technology programme
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 24 (2009) Richard.
Diffie-Hellman Key Exchange
Quantum Computing Joseph Stelmach.
Quantum Cryptography Quantum Computing
Quantum Cryptography Quantum Computing
Presentation transcript:

COMPSCI 290.2: Computer Security “Quantum Cryptography” including Quantum Communication Quantum Computing

Quantum Communication NOT used to encrypt data! Goal, instead, is to detect eavesdroppers Can be used to exchange a private key

Uncertainty Principle In quantum mechanics, certain pairs of properties of particles cannot both be known simultaneously, e.g., Position and momentum of an electron (Heisenberg) If a measurement determines (with precision) the value of one of the properties, then the value of the other cannot be known

Photon Spin (Polarization) Photons can be given either “rectilinear’’ or “diagonal’’ spin as they travel down a fiber. Rectilinear: or Diagonal: or Measuring rectilinear spin with a rectilinear filter yields polarization of photon. blocked

What if the wrong filter is used? or (blocked) (equal probability) measure diagonal measure rectilinear destroys state

Quantum Key Exchange The goal is to enable Alice and Bob to agree on a private key, even in the face of an eavesdropper, Eve. Like Diffie-Hellman, the protocol is still susceptible to a “man-in-the-middle” attack. But unlike Diffie-Hellman, the protocol does not depend on the difficulty of computing discrete logarithms or any other computational problem.

BB84 Protocol (Bennet and Brassard) bit encoding: 0 1 0 1 Alice sends Bob a stream of photons randomly polarized in one of 4 polarizations: Bob measures the photons in random orientations e.g.: x + + x x x + x (orientations used) \ | - \ / / - \ (measured polarizations) 1 0 1 1 0 0 1 1 (encoded bit values) Bob tells Alice in the open what orientations he used, but not what bit values he measured Alice sends Bob in the open a list of positions at which the orientations are correct

Detecting an Eavesdropper Alice selects some subset of k of the shared bits and reveals them to Bob in the open. If Bob notices any differences, then Eve must have changed a bit by guessing the wrong polarization when eavesdropping. Eve has little hope of guessing the same polarization as Bob all k times. Each measurement has a ¼ chance of changing a bit value. The probability of not changing any values is (3/4)k – which can be very small if k is chosen large enough

In the “real world” In April 2014 China began installing a 2000-kilometer quantum communications link between Beijing and Shanghai In August 2016 China launched the Quantum Science Satellite (QUESS) and plans to test quantum entanglement over large distances, and quantum key exchange

Quantum Computers The state of a computer consists of the contents of its memory and storage, including values of registers (including the program counter), memory, disk contents, etc. In a conventional computer each memory “unit” holds one value (e.g., 0 or 1) at a time. Computation consists of a sequence of state transitions. But in a quantum computer, a memory unit holds a “superposition” of possible values.

Qubit (somewhat simplified) A single quantum “bit” which is 1 with probability p and 0 with probability 1-p. When measured, outcome is either 0 or 1. Measuring a qubit changes its value! If outcome is 0, p is set to 0, if outcome is 1, p is set to 1. A qubit could be implemented using a photon to carry a horizontal or vertical polarization.

Quantum Entanglement Suppose two bits have value 00 with probability ½ and 11 with probability ½. If the bits are separated and measured at different locations, the measurements must yield the same values. E.g., if first measurement is 0, second must also be 0. Entanglement also allows multiple states (e.g., 00 vs. 11) to be acted on simultaneously. Difficulty in building a quantum computer is maintaining quantum entanglement in the face of environmental noise (quantum decoherence).

More on Qubits A qubit is a superposition of two basis states, and (representing values 0 and 1), which can be thought of as north and south poles of a unit sphere. I.e., qubit is , where v0 and v1 are complex numbers such that |v0|2 + |v1|2 = 1. (|v0|2 and |v1|2 are probabilities of qubit being 0 or 1) https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg can be written as

Quantum Gates Qubits are manipulated with quantum logic gates. Gates are just multiplications by unitary matrices. Hadamard matrix maps to and to i.e., gate operation is This gate randomizes a basis state to have equal chance of being measured 0 or 1.

Factoring Large Primes In 1994 Peter Shor showed that a quantum computer can factor a number n in O(log3 n) time. A similar result holds for solving the discrete logarithm problem. If a large-enough quantum computer can be built, then RSA and Diffie-Hellman key-exchange will no longer be secure. (But largest number factored with this algorithm as of 2015 was 21!)

Details of Shor’s Algorithm Pick a random number 1 < a < n If a is a factor of n, what a lucky guess! Use a quantum circuit to find smallest r > 1 such that ar = 1 mod n If r is odd or ar/2 = -1 mod n, go back to step 1 GCD(ar/2 + 1, n) and GCD(ar/2 - 1, n) are factors of n Example: n = 15, a = 7, r = 4 a1 = 7 mod n, a2 = 4 mod n, a3 = 13 mod n, a4 = 1 mod n a4/2+1 = 50, a4/2-1 = 48 GCD(50,15) = 5, GCD(48,15) = 3

Controversial Quantum Computer D-Wave Systems, Inc., purports to build a quantum computer based on a 128-qubit chipset. No convincing demonstration of speed-up over conventional computer yet. Unresolved debate about whether there is actually quantum entanglement among the qubits. (Evidence seems to be leaning towards yes?)