Challenges in the Assimilation of PV Power Data in the Convection-Permitting High-Resolution NWP Model COSMO-DE Stefan Declair*, Yves-Marie Saint-Drenan,

Slides:



Advertisements
Similar presentations
Veldhoven, Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity Stephan de Roode (1,2) & Alexander Los (2)
Advertisements

Meteorologisches Institut der Universität München
Using a Radiative Transfer Model in Conjunction with UV-MFRSR Irradiance Data for Studying Aerosols in El Paso-Juarez Airshed by Richard Medina Calderón.
Data assimilation for validation of climate modeling systems Pierre Gauthier Department of Earth and Atmospheric Sciences Université du Québec à Montréal.
Meteorological Driver for CTM Freie Universität Berlin Institut für Meteorologie Eberhard Reimer.
6 th SMOS Workshop, Lyngby, DK Using TMI derived soil moisture to initialize numerical weather prediction models: Impact studies with ECMWF’s.
Chapter 13 – Weather Analysis and Forecasting. The National Weather Service The National Weather Service (NWS) is responsible for forecasts several times.
Assimilation of (satellite) cloud-information at the convective scale in an Ensemble Kalman Filter Annika Schomburg 1, Christoph Schraff 1, Africa Perianez.
Improving Cloud Simulation in Weather Research and Forecasting (WRF) Through Assimilation of GOES Satellite Observations Andrew White Advisor: Dr. Arastoo.
WWOSC 2014 Assimilation of 3D radar reflectivity with an Ensemble Kalman Filter on a convection-permitting scale WWOSC 2014 Theresa Bick 1,2,* Silke Trömel.
ASSIMILATION OF GOES-DERIVED CLOUD PRODUCTS IN MM5.
1. The MPI MAX-DOAS inversion scheme 2. Cloud classification 3. Results: Aerosol OD: Correlation with AERONET Surface extinction: Correlation with Nephelometer.
Atmospheric TU Delft Stephan de Roode, Harm Jonker clouds, climate and weather air quality in the urban environmentenergy.
SMHI in the Arctic Lars Axell Oceanographic Research Unit Swedish Meteorological and Hydrological Institute.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Statistical Characteristics of High- Resolution COSMO.
ISDA 2014, Feb 24 – 28, Munich 1 Impact of ensemble perturbations provided by convective-scale ensemble data assimilation in the COSMO-DE model Florian.
Princeton University Development of Improved Forward Models for Retrievals of Snow Properties Eric. F. Wood, Princeton University Dennis. P. Lettenmaier,
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss High-resolution data assimilation in COSMO: Status and.
Assimilating satellite cloud information with an Ensemble Kalman Filter at the convective scale Annika Schomburg, Christoph Schraff EUMETSAT fellow day,
COSMO General Meeting, Offenbach, 7 – 11 Sept Dependance of bias on initial time of forecasts 1 WG1 Overview
The revised Diagnostics of 2m Values - Motivation, Method and Impact - M. Raschendorfer, FE14 Matthias Raschendorfer DWD COSMO Cracow 2008.
Météo-France / CNRM – T. Bergot 1) Introduction 2) The methodology of the inter-comparison 3) Phase 1 : cases study Inter-comparison of numerical models.
INSTYTUT METEOROLOGII I GOSPODARKI WODNEJ INSTITUTE OF METEOROLOGY AND WATER MANAGEMENT TITLE : IMPLEMENTATION OF MOSAIC APPROACH IN COSMO AT IMWM AUTHORS:
Erstellung innovativer Wetter- und Leistungsprognosemodelle für die Netzintegration wetterabhängiger Energieträger - Eine Kooperation von Meteorologie.
Soil moisture generation at ECMWF Gisela Seuffert and Pedro Viterbo European Centre for Medium Range Weather Forecasts ELDAS Interim Data Co-ordination.
Data assimilation, short-term forecast, and forecasting error
An air quality information system for cities with complex terrain based on high resolution NWP Viel Ødegaard, r&d department.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz First Experience with KENDA at MeteoSwiss Daniel Leuenberger,
Weather forecasting by computer Michael Revell NIWA
Improved road weather forecasting by using high resolution satellite data Claus Petersen and Bent H. Sass Danish Meteorological Institute.
Ensemble Kalman Filter in a boundary layer 1D numerical model Samuel Rémy and Thierry Bergot (Météo-France) Workshop on ensemble methods in meteorology.
Next The evening boundary layer: turbulence or no turbulence? Bas van de Wiel, Ivo van Hooijdonk & Judith Donda in collaboration with: Fred Bosveld, Peter.
Attempts to improve distribution of boundary layer clouds in AFES Akira Kuwano-Yoshida, Takeshi Enomoto and Wataru Ohfuchi Earth Simulator Center, JAMSTEC,
Assimilating satellite cloud information with an Ensemble Kalman Filter at the convective scale Annika Schomburg, Christoph Schraff, Hendrik Reich, Roland.
T. Bergot - Météo-France CNRM/GMME 1) Methodology 2) Results for Paris-CdG airport Improved site-specific numerical model of fog and low clouds -dedicated.
Application of an adaptive radiative transfer parameterisation in a mesoscale numerical weather prediction model DWD Extramural research Annika Schomburg.
The correction of initial values of temperature at low model levels Blinov D. Revokatova A. Rivin G. Rozinkina I. Sapuncova E.
Modeling and Evaluation of Antarctic Boundary Layer
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Tuning the horizontal diffusion in the COSMO model.
Page 1 Developments in regional DA Oct 2007 © Crown copyright 2007 Mark Naylor, Bruce Macpherson, Richard Renshaw, Gareth Dow Data Assimilation and Ensembles,
MSG cloud mask initialisation in hydrostatic and non-hydrostatic NWP models Sibbo van der Veen KNMI De Bilt, The Netherlands EMS conference, September.
A step toward operational use of AMSR-E horizontal polarized radiance in JMA global data assimilation system Masahiro Kazumori Numerical Prediction Division.
Vincent N. Sakwa RSMC, Nairobi
Météo-France / CNRM – T. Bergot 1) Methodology 2) The assimilation procedures at local scale 3) Results for the winter season Improved Site-Specific.
Implementation of an improved horizontal diffusion scheme into the Méso-NH Günther Zängl Laboratoire d’Aérologie / University of Munich 7 March 2005.
Assimilating Cloudy Infrared Brightness Temperatures in High-Resolution Numerical Models Using Ensemble Data Assimilation Jason A. Otkin and Rebecca Cintineo.
Juliane Schwendike and Sarah Jones The Interaction between Convection and African Easterly Waves:
OSEs with HIRLAM and HARMONIE for EUCOS Nils Gustafsson, SMHI Sigurdur Thorsteinsson, IMO John de Vries, KNMI Roger Randriamampianina, met.no.
A revised formulation of the COSMO surface-to-atmosphere transfer scheme Matthias Raschendorfer COSMO Offenbach 2009 Matthias Raschendorfer.
Limitations of ’column physics’ for radiation computations in atmospheric models Bent H Sass Danish Meteorological Institute 1 May 2009 As the horizontal.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Statistics of COSMO Forecast Departures in View of.
The DNICast team A.Kazantzidis Laboratory of Atmospheric Physics, University of Patras, Greece Solar resource and forecasting needs.
Characteristics of precipitating convection in the UM at Δx≈200m-2km
Soil analysis scheme for AROME within SURFEX
Development of the two-equation second-order turbulence-convection model (dry version): analytical formulation, single-column numerical results, and.
Surface Pressure Measurements from the NASA Orbiting Carbon Observatory-2 (OCO-2) Presented to CGMS-43 Working Group II, agenda item WGII/10 David Crisp.
Current verification results for COSMO-EU and COSMO-DE at DWD
MM5- and WRF-Simulated Cloud and Moisture Fields
“Consolidation of the Surface-to-Atmosphere Transfer-scheme: ConSAT
Tuning the horizontal diffusion in the COSMO model
Radar Data Assimilation
Daniel Leuenberger1, Christian Keil2 and George Craig2
EUMETSAT fellow day, 17 March 2014, Darmstadt
GIJS DE BOER(1), GREGORY J. TRIPOLI(1), EDWIN W. ELORANTA(2)
Vertical localization issues in LETKF
A. Topographic radiation correction in COSMO: gridscale or subgridscale? B. COSMO-2: convection resolving or convection inhibiting model? Matteo Buzzi.
Conditional verification of all COSMO countries: first results
Characterizing the response of simulated atmospheric boundary layers to stochastic cloud radiative forcing Robert Tardif, Josh Hacker (NCAR Research Applications.
Improved Forward Models for Retrievals of Snow Properties
Enza Di Tomaso, Jerónimo Escribano, Nick Schutgens,
Presentation transcript:

Challenges in the Assimilation of PV Power Data in the Convection-Permitting High-Resolution NWP Model COSMO-DE Stefan Declair*, Yves-Marie Saint-Drenan, Roland Potthast Erstellung innovativer Wetter- und Leistungsprognosemodelle für die Netzintegration wetterabhängiger Energieträger - Eine Kooperation von Meteorologie und Energiewirtschaft - 80. Jahrestagung der DPG und DPG-Frühjahrstagung Regensburg, March 08th 2016

Motivation: Low Stratus Planetary boundary layer height free atmosphere Inversion layer Ekman layer (1000m) Prandtl layer (100m) laminar (mm) temperature

Agenda Data Assimilation Impact Experiment Method Observation Data Monitoring: Bias and Error Assimilation: Impact?

Agenda Data Assimilation Impact Experiment Method Observation Data Monitoring: Bias and Error Assimilation: Impact?

Forecast: Can I cross the street without getting hit? Information used: Observations Knowledge about cars, street, etc Experience  statistics Forecast errors due to: Observation (estimation) errors Model errors (icy street) Case does not match statistics

Numerical Weather Forecast Model: First-guess Data assimilation tool Observations Analysis: Improved initial conditions for next integration step

Available Observation Data Blue: large-scale PV power plants (~200) Grey: small-scale PV power panels (~3.7k) Meta data: Lon/lat coordinates Tilt angle Azimuth angle Degradation coefficients Corrections (fitted 1)) for : Temperature Power 1) Source and Work: Yves-Marie Saint-Drenan, Fraunhofer IWES

Forward operator for PV module Model Equivalent: PV Power Forward Operator Forward operator for PV module Model variables: Shortwave surface irradiance (direct and diffuse downward) Panel ambient temperature Surface albedo Synthetic PV power Module meta data: Panel azimuth/tilt angles lon/lat Degradation coefficients Corrections for temperature and power Compute angle between panel normal and sun position at current time Transform horizontal model irradiation into tilted panel plane Compute losses (soiling, shading, module temperature, optical losses)

Sources of Error Inaccurate/unknown meta data Angles Large diversity in panel manufacturers Local deviations (data) from fitted corrections1) surface albedo Local deviations (model) from Aerosol optical thickness 2) Cloud positions Radiation scheme 3) 1) Source and Work: Yves-Marie Saint-Drenan, Fraunhofer IWES 2) Tegen et al., Journal of Geophysical Research., 102, pp. 23895-23915 (1997) 3) Ritter et al., Monthly Weather Review, 120, pp. 303-325 (1992).

Agenda Data Assimilation Impact Experiment Method Observation Data Monitoring: Bias and Error Assimilation: Impact

Monitoring of Observations Determination of PV power model equivalent bias and observation error Cycling over 1 week, PV power data only passive in assimilation Valid for 2014051600 - 2014052300

First Glimpse on First Results: Low Clouds Control First-guess Analysis Difference

First Glimpse on First Results: Low Clouds Experiment First-guess Analysis Difference

First Glimpse on First Results: Low Clouds 06 UTC 09 UTC 12 UTC

First Glimpse on First Results: Mid Clouds 06 UTC 09 UTC 12 UTC

Conclusion LETKF successfully utilized to assimilate PV power obserations Cloud cover correction pretty well for low and middle clouds despite strong non-locality in the morning Spread increase due to PV power data assimilation  better representation of model error Outlook Stock up on PV power data! Experiments with better localization lengths Detailed analysis of increments in other atmospheric fields Single observation experiments Impact on forecast quality Combi-experiment: add wind power data to assimilation cycle

Thank you for your attention! Now: Q & A