oblate prolate l=2 a20≠0, a2±1= a2±2= 0 Shape parameterization

Slides:



Advertisements
Similar presentations
March 1, 2013GRETINA workshop Coulomb excitation of even Ru and Mo isotopes Juho Rissanen Nuclear Structure Group, Lawrence Berkeley.
Advertisements

Electromagnetic Properties of
With five Appendices at the end. Deformed nuclei So far, we have dealt with spherical nuclei only. How do we describe deformed nuclei? We need two parameters.
More General IBA Calculations Spanning the triangle How to use the IBA in real life.
II. Spontaneous symmetry breaking. II.1 Weinberg’s chair Hamiltonian rotational invariant Why do we see the chair shape? States of different IM are so.
The Collective Model Aard Keimpema.
W. Udo Schröder, 2005 Rotational Spectroscopy 1. W. Udo Schröder, 2005 Rotational Spectroscopy 2 Rigid-Body Rotations Axially symmetric nucleus 
Microwave Spectroscopy II
The Shell Model of the Nucleus 5. Nuclear moments
Orbits, shapes and currents S. Frauendorf Department of Physics University of Notre Dame.
NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France.
Orbits, shapes and currents S. Frauendorf Department of Physics University of Notre Dame.
Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, (2005); PRC 76, (2007); PRC 78, (2008); PRC 79,
5. Exotic modes of nuclear rotation Tilted Axis Cranking -TAC.
Shell Model based deformation analysis of light Cadmium isotopes T. Schmidt 1, A. Blazhev 1, K. Heyde 2, J. Jolie 1 1 Institut für Kernphysik, Universität.
4. The rotating mean field. The mean field concept A nucleon moves in the mean field generated by all nucleons. The mean field is a functional of the.
1 New formulation of the Interacting Boson Model and the structure of exotic nuclei 10 th International Spring Seminar on Nuclear Physics Vietri sul Mare,
原子核配对壳模型的相关研究 Yanan Luo( 罗延安 ), Lei Li( 李磊 ) School of Physics, Nankai University, Tianjin Yu Zhang( 张宇 ), Feng Pan( 潘峰 ) Department of Physics, Liaoning.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
1 New symmetries of rotating nuclei S. Frauendorf Department of Physics University of Notre Dame.
How do nuclei rotate? 1. The molecular picture.
Spontaneous symmetry breaking and rotational bands S. Frauendorf Department of Physics University of Notre Dame.
Experimental measurement of the deformation through the electromagnetic probe Shape coexistence in exotic Kr isotopes. Shape coexistence in exotic Kr isotopes.
How do nuclei rotate? The nucleus rotates as a whole.
The Spinning Top Chloe Elliott. Rigid Bodies Six degrees of freedom:  3 cartesian coordinates specifying position of centre of mass  3 angles specifying.
Petrică Buganu, and Radu Budaca IFIN-HH, Bucharest – Magurele, Romania International Workshop “Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects”
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Shell model Notes: 1. The shell model is most useful when applied to closed-shell.
WHY ARE NUCLEI PROLATE:
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
FROM PARTICLE TO RIGID BODY.
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
Left-handed Nuclei S. Frauendorf Department of Physics University of Notre Dame, USA IKH, Forschungszentrum Rossendorf Dresden, Germany.
Geometric model Potential energy: neglect higher-order termsneglect … depends on 2 internal shape variables A B oblate prolate spherical x y …corresponding.
Algebraic collective model and its applications Gabriela Thiamová Laboratoire de Physique Subatomique et de Cosmologie Institut National Polytechnique.
 Standard Model goes pear-shaped in CERN experiment The Register  Physicists get a good look at pear-shaped atomic nuclei The Los Angeles Times  Exotic.
Quantum Phase Transition from Spherical to γ-unstable for Bose-Fermi System Mahmut Böyükata Kırıkkale University Turkey collabration with Padova–Sevilla.
No Low-Lying Nuclear Vibrations: Configuration Dependent Pairing and Axial Asymmetry J. F. Sharpey-Schafer University of the Western Cape, South Africa.
Shape coexistence in the neutron- deficient Pb region: Coulomb excitation at REX-ISOLDE Liam Gaffney 1,2 Nele Kesteloot 2,3 1 University of the West of.
Nordita Workshop on chiral bands /04/2015 Multiple chiral bands associated with the same strongly asymmetric many- particle nucleon configuration.
Rotational energy term in the empirical formula for the yrast energies in even-even nuclei Eunja Ha and S. W. Hong Department of Physics, Sungkyunkwan.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
of very neutron deficient heavy nuclei
Determining Reduced Transition Probabilities for 152 ≤ A ≤ 248 Nuclei using Interacting Boson Approximation (IBA-1) Model By Dr. Sardool Singh Ghumman.
PHY 711 Classical Mechanics and Mathematical Methods
IV. Nuclear Structure Topics to be covered include:
Shape parameterization
Yu Zhang(张宇), Feng Pan(潘峰)
20/30.
Kinetics of Rigid Bodies in Three Dimensions
PHL424: Nuclear rotation.
Emmanuel Clément IN2P3/GANIL – Caen France
PHY 711 Classical Mechanics and Mathematical Methods
Isomers and shape transitions in the n-rich A~190 region:
Nuclear Chemistry CHEM 396 Chapter 4, Part B Dr. Ahmad Hamaed
Kinematics of Rigid Bodies in Three Dimensions
Quantal rotation Molecules
Nuclear Tidal Waves Daniel Almehed Stefan Frauendorf Yongquin Gu
Physics 321 Hour 31 Euler’s Angles.
High spin physics- achievements and perspectives
Rotational Spectroscopy
Nuclear shapes for the critical point
20/30.
PHY 711 Classical Mechanics and Mathematical Methods
Physics 319 Classical Mechanics
Shape-coexistence enhanced by multi-quasiparticle excitations in A~190 mass region 石跃 北京大学 导师:许甫荣教授
Stability of g- and s-bands in 182Os in three-dimensional cranked HFB
II. Spontaneous symmetry breaking
How do nuclei rotate? 1. The molecular picture.
Quantal rotation Molecules
Normal persistent currents and gross shell structure at high spin
Presentation transcript:

oblate prolate l=2 a20≠0, a2±1= a2±2= 0 Shape parameterization 8 20 28 50 2 single particle energies elongation Nilssondiagramm axially symmetric quadrupole oblate prolate l=2 a20≠0, a2±1= a2±2= 0

Quadrupole deformation (λ=2) z 3 z There are five independent real parameters, α20 indicates the stretching of the 3-axis with respect to the 1- and 2-axes α22 determines the difference in length between the 1- and 2-axes three Euler angles, which determine the orientation of the principle axis system (1,2,3) with respect to the laboratory frame (x,y,z) Hill - Wheeler introduced the (β, γ) – parameters:

Quadrupole deformation (λ=2) Consider the nuclear shapes in the principal axis system (1, 2, 3) ≡ (x´, y´, z´)

(β, γ) coordinates At γ = 00 the nucleus is elongated along the z´axis, but the x´and y´axes are equal (prolate shape for x´= y´) As we increase γ, the x´axis grows at the expense of the y´and z´axes through a region of triaxial shapes with three unequal axis, until axial symmetry is again reached at γ = 600, but now with the z´and x´axis equal in length. These two axes are longer than the y´axis (oblate shape for x´= z´) This pattern is repeated: every 600 axial symmetry repeated and prolate and oblate shapes alternate.

(β, γ) coordinates Figure: The (β,γ) plane is divided into six equivalent parts by the symmetries: the sector 00 and 600 contains all shapes uniquely, i.e. triaxial shapes the types of shapes encountered along the axis: e.g. prolate x´= y´implies prolate shapes with the z´axis as the long axis and the two other axis x´and y´equal. various nuclear shapes – prolate or oblate – in the (β,γ) plane are repeated every 600. Because the axis orientations are different, the associated Euler angles also differ. In conclusion, the same physical shape (including ist orientation in space) can be represented by different sets of deformation parameters (β,γ) and Euler angles!

g b V β (b, g = 600) (b, g = 00) Quadrupole deformation (λ=2) Spherical Deformed β V Quadrupole deformation (λ=2) Non collective oblate (b, g = 600) triaxial g spherical b Collective prolate (0,0) (b, g = 00)

108Te 160Er 2.1 3.1 Collective excitation E(4+) / E(2+): rotational vs vibrational Rotational (deformed): E(4+) / E(2+) = 10/3 Vibrational (spherical): E(4+) / E(2+) = 2 108Te 160Er 2.1 3.1

Classical collective Hamiltonian of Bohr-Mottelson for quadrupole deformation Quadrupole (λ=2) motion where (β, γ) parameters have been used. Spherical Deformed V β Potential

Moment of inertia Rigid body moment of inertia: z R()  Rigid body moment of inertia: Irrotational flow moment of inertia:

Experimental 22+ energy and estimate of γ-deformation parameter rigid triaxial rotor model Davydov and Filippov, Nucl. Phys. 8, 237 (1958) γ 00 50 100 12.50 150 17.50 200 22.50 250 27.50 300 E(41)/E(21) 3.33 3.32 3.31 3.28 3.21 3.12 2.99 2.84 2.72 2.67 E(61)/E(21) 7.00 6.94 6.85 6.69 6.42 6.07 5.69 5.36 5.09 5.00 E(81)/E(21) 12.00 11.97 11.83 11.56 11.11 10.48 9.78 9.13 8.55 8.15 8.00 E(101)/E(21) 18.33 18.31 17.91 16.42 14.30 13.31 12.47 11.67 E(22)/E(21) ∞ 65.16 15.94 10.04 4.95 3.73 2.93 2.41 2.10 2.00 E(42)/E(21) 67.50 18.28 12.41 9.27 7.44 6.36 5.76 5.51 5.54 5.67 E(62)/E(21) 71.17 22.00 16.20 13.19 11.57 10.75 10.39 10.26 10.12 10.00

Prolate – oblate shape transition rigid triaxial rotor model Davydov and Filippov, Nucl. Phys. 8, 237 (1958) rigid soft μ=0.5 γ 00 100 150 200 22.50 250 27.50 300 Qs(21)/Q0 -0.28 -0.27 -0.25 -0.22 -0.18 -0.10 0.0 soft asymmetric rotor model: with

Experimental 22+ B(E2)-values and estimate of γ-deformation parameter rigid triaxial rotor model γ 00 50 100 150 200 250 300 B(E2;22→0)/B(E2;21→0) .0075 .0288 .0560 .0718 .0445 .0111 .0525 .1510 .3826 .9058 1.43 B(E2;22→2)/B(E2;22→0) 1.49 1.70 2.70 5.35 20.6 ∞

Triaxiality and γ-softness in 196Pt 208Pb → 196Pt 4.8 AMeV position-sensitive parallel plate counter (Doppler correction) 870≤θcm≤930 750≤θcm≤1500 A. Mauthofer et al., Z.Phys. A336, 263 (1990)

Level scheme of 196Pt

rigid asymmetric rotor model Comparison with soft asymmetric rotor model

Spin dependence of the spectroscopic quadrupole moment

Transition quadrupole moments in the γ-band soft ARM rigid ARM

B(E2)-values connecting the γ- and gs-band Iγ→Igs-2 Iγ→Igs

Interpretation of the collective properties in 196Pt 14 energy levels and 22 E2 matrix elements can be described by the soft asymmetric rotor model assuming the following parameters: γ=600 γ=00 P.O. Hess et al. J.Phys. G7 (1981), 737

Potential energy surfaces of the W-Os-Pt-Hg chain of isotopes 194 200 192 196 186 188 190 182 184 α0 α2 P.O. Hess et al. J.Phys. G7 (1981), 737 general collective model

Spectroscopic quadrupole moments in the ground state band of Os-isotopes C.Y. Wu, D. Cline et al.; Ann. Rev. Nucl. Part Sci 36 (1986), 683

Spectroscopic quadrupole moments in the ground state band of W-isotopes Q0 = 7.10 (38) b β = 0.274 – 0.193 Q0 = 6.72 (35) b β = 0.258 Q0 = 5.87 (29) b β = 0.223 R. Kulessa et al.; Phys. Lett B218 (1989), 421

Spectroscopic quadrupole moments in the gamma band of W-isotopes Q0 = 5.8 (5) b β = 0.227 Q0 = 5.6 (3) b β = 0.219 Q0 = 6.3 (4) b β = 0.239 R. Kulessa et al.; Phys. Lett B218 (1989), 421

Collective properties in 198, 200, 202, 204Hg A B(E2;21→01) 198 29 spu 200 25 spu 202 17 spu 204 12 spu soft (μ=0.3) asymmetric rotor model: IBM – O(6) limit: boson number N = 5 to 2 for Hg-isotopes with A=198 to 204 C. Günther et al.; Z. Phys. A301 (1981), 119 Y.K. Agarwal et al.; Z. Phys. A320 (1985), 295

Parameter of the asymmetric rotor model isotope β γ μ 182W 0.274 11.40 11.20 0.17 184W 0.258 13.80 13.70 0.15 186W 0.223 15.90 15.80 0.05 186Os 0.196 16.50 16.10 0.26 188Os 0.185 19.20 18.80 190Os 0.184 22.30 22.00 192Os 0.168 25.20 0.10 192Pt 0.146 - 32.50 0.35 194Pt 0.134 196Pt 0.135 0.37 198Hg 0.106 36.30 38.00 0.44 200Hg 0.098 39.10 41.00 202Hg 0.082 33.40 34.40 204Hg 0.068 31.50 0.19