Mapping Estimation with BMEGUI

Slides:



Advertisements
Similar presentations
SPM – introduction & orientation introduction to the SPM software and resources introduction to the SPM software and resources.
Advertisements

Theresa Valentine US Forest Service Corvallis Forest Science Lab
A GENERALIZED KOLMOGOROV-SMIRNOV STATISTIC FOR DETRITAL ZIRCON ANALYSIS OF MODERN RIVERS Oscar M. Lovera Department of Earth & Space Sciences, UCLA
Climate Predictability Tool (CPT)
A Short Introduction to Curve Fitting and Regression by Brad Morantz
Some Terms Y =  o +  1 X Regression of Y on X Regress Y on X X called independent variable or predictor variable or covariate or factor Which factors.
Histograms Capital Credit Union Issue: Analyze credit card balances for Capital Credit Union customers using a frequency distribution and histogram. Objective:
More Raster and Surface Analysis in Spatial Analyst
Checking the Required Conditions. Check these 3 boxes.
Digimap Carto is an advanced version of classic but with many more options. You need to return to the Digimap home page and this time select the “Digimap.
Raster Analysis Raster math Topography: Slope, aspect, contours Reclassify Raster / Vector Conversions Statistics: min, max, mean, std. dev. –Local, Neighborhood,
19 th Advanced Summer School in Regional Science Overview and more advanced directions with ArcGIS.
ESRM 250 & CFR 520: Introduction to GIS © Phil Hurvitz, KEEP THIS TEXT BOX this slide includes some ESRI fonts. when you save this presentation,
Day 1-3. Variable Selection and GIS Processing 1.Discuss V mapping goals, targeted system (what is vulnerable?), framework 2.Choose data layers (criteria:
Efficient Model Selection for Support Vector Machines
Range, Variance, and Standard Deviation in SPSS. Get the Frequency first! Step 1. Frequency Distribution  After reviewing the data  Start with the “Analyze”
Climate Predictability Tool (CPT) Ousmane Ndiaye and Simon J. Mason International Research Institute for Climate and Society The Earth.
Monte Carlo Simulation CWR 6536 Stochastic Subsurface Hydrology.
Normal Distributions Z Transformations Central Limit Theorem Standard Normal Distribution Z Distribution Table Confidence Intervals Levels of Significance.
Stat 155, Section 2, Last Time Numerical Summaries of Data: –Center: Mean, Medial –Spread: Range, Variance, S.D., IQR 5 Number Summary & Outlier Rule Transformation.
Guide to Using Excel For Basic Statistical Applications To Accompany Business Statistics: A Decision Making Approach, 6th Ed. Chapter 3: Describing Data.
Using Climatic data in Diva GIS Franck Theeten, Royal Museum for central Africa Cabin training 2013.
Spatio-Temporal Surface Vector Wind Retrieval Error Models Ralph F. Milliff NWRA/CoRA Lucrezia Ricciardulli Remote Sensing Systems Deborah K. Smith Remote.
Mapping Estimation with BMEGUI Prahlad Jat (1) and Marc Serre (1) (1) University of North Carolina at Chapel Hill.
Probability & Statistics Sections 2.3, 2.4. A. The mean is very low. B. The data values are all very close in value. C. The data values must all be the.
Managing and Curating Data Chapter 8. Introduction Data organization Data management Data curation Raw data is required to repeat a scientific study Any.
Fuzzy Logic Toolbox in MATLAB Praktikum 10. example  We want to buid FIS Mamdani, with this rules :  1. If the service is poor or the food is rancid,
SP5 - Neuroinformatics SynapsesSA Tutorial Computational Intelligence Group Technical University of Madrid.
Probability = Relative Frequency. Typical Distribution for a Discrete Variable.
Advanced GIS Using ESRI ArcGIS 9.3 Spatial Analyst 2.
Matlab Screen  Command Window  type commands  Current Directory  View folders and m-files  Workspace  View program variables  Double click on a.
Concepts and Applications of Kriging
Esri UC 2014 | Technical Workshop | Concepts and Applications of Kriging Eric Krause Konstantin Krivoruchko.
Laboratory #1 LabVIEW Supplement Prepared by Tiffany Morris.
Esri UC2013. Technical Workshop. Technical Workshop 2013 Esri International User Conference July 8–12, 2013 | San Diego, California Concepts and Applications.
Advanced Tutorial on : Global offset and residual covariance ENVR 468 Prahlad Jat and Marc Serre.
How Good is a Model? How much information does AIC give us? –Model 1: 3124 –Model 2: 2932 –Model 3: 2968 –Model 4: 3204 –Model 5: 5436.
2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) Aihua Li Yanchen Bo
1 INTRODUCTION TO “Stratigrafia” The code in the workbook “stratigrafia” computes - longitudinal profiles; - water surface elevation; - sediment transport.
Ex St 801 Statistical Methods Inference about a Single Population Mean (CI)
Probability and Statistics 12/11/2015. Statistics Review/ Excel: Objectives Be able to find the mean, median, mode and standard deviation for a set of.
A Binary Linear Programming Formulation of the Graph Edit Distance Presented by Shihao Ji Duke University Machine Learning Group July 17, 2006 Authors:
Modeling Space/Time Variability with BMEGUI Prahlad Jat (1) and Marc Serre (1) (1) University of North Carolina at Chapel Hill.
Starting with BMEGUI Prahlad Jat (1) and Marc Serre (1) (1) University of North Carolina at Chapel Hill.
1 Berger Jean-Baptiste
Histograms and Distributions Experiment: Do athletes have faster reflexes than non-athletes? Questions: - You go out and 1st collect the reaction time.
Statistics Descriptive Statistics. Statistics Introduction Descriptive Statistics Collections, organizations, summary and presentation of data Inferential.
Graduate Students, CEE-6190
Statistical Methods Michael J. Watts
Statistical Estimation
Statistical Methods Michael J. Watts
Guide to Using Excel 2007 For Basic Statistical Applications
Plug-In T7: Problem Solving Using Access 2007
GPS & GIS – An Introduction
Modeling Space/Time Variability with BMEGUI
Presentation of the project of Yasuyuki Akita Temporal GIS Fall 2004
Microsoft Office Illustrated
8.1 - Measures of Central Tendency and Variation
Inferring Population Parameters
Topic 5: Exploring Quantitative data
How to Insert a Page Break of Varying Styles
Concepts and Applications of Kriging
Raster Data Analysis.
Program for interactive plotting of tri-linear data.
Introduction to the WASP Interface
Hippocampal “Time Cells”: Time versus Path Integration
CHAPTER – 1.2 UNCERTAINTIES IN MEASUREMENTS.
Concepts and Applications of Kriging
INTRODUCTION TO EXCEL use Excel to: 1. Store and organize data, 2. Analyze data, and 3. Represent data graphically (e.g., in bar graphs, histograms,
CHAPTER – 1.2 UNCERTAINTIES IN MEASUREMENTS.
Presentation transcript:

Mapping Estimation with BMEGUI Prahlad Jat(1) and Marc Serre(1) (1) University of North Carolina at Chapel Hill

Agenda Introduction Analysis Using Soft Data BME Estimation Interaction with ArcGIS

Introduction

Temporal GIS analysis process Read Data File Data Field Screen Check Data Distribution Data Distribution Screen Exploratory Data Analysis Screen Exploratory Data Analysis Mean Trend Analysis Screen Mean Trend Analysis Space/Time Covariance Analysis Screen Covariance Analysis BME Analysis BME Estimation Screen

BME Estimation Screen Time series of BME mean estimation Map of BME mean estimation Map of BME error variance

Analysis Using Soft Data

Data File with Soft Data Use five data columns Data Type Value1 - Value2 Value3 - Value4 Data Type field Specify data types (Hard/Uniform/Gaussian/ Triangular /Truncated Gaussian) Value1, Value2, Value3, and Value4 fields Soft data parameters

Data Types Hard Data Soft Data (Uniform) Soft Data (Gaussian) Value1&2 Fields: Data Value Soft Data (Uniform) Data Type: 1 Value1 Field: Lower Bound Value2 Field: Upper Bound Value3 & 4 Field: Dummy Soft Data (Gaussian) Data Type: 2 Value1 Field: Mean Value2 Field: Standard Deviation Value3 & 4 Fields: Dummy

Data Types Soft Data (Triangular) Soft Data (Trunc. Gaussian) Value1 Field: Lower Bound Value2 Field: Upper Bound Value3 Field: Mode Value4 Field: Dummy Soft Data (Trunc. Gaussian) Data Type: 4 Value1 Field: Mean Value2 Field: Standard Deviation Value3 Field: Lower Trunc.Value Value4 Field: Upper Trunc. value

Data File Example Lower Bound: 24.5 Data Type: 1 (Uniform) Upper Bound: 51.45 Mean: 18.1 Data Type: 2 (Gaussian) Standard Dev: 38.01

Data File Example

Use Data Type To use soft data, check “Use DataType” Set “Data Type”, “Value1 Field”, and “Value2 Field”

Hardened Data Histogram/Basic statistics Soft data is “hardened” Uniform – Mid-point Gaussian – Mean value Std. formulas for others “Hardened” values are used in Histogram Explanatory data analysis Mean trend estimation Experimental covariance calculation

Exploratory Data Analysis “Hardened” data is used “Temporal Evolution” tab Hard data: Blue circle Soft data: red triangle Soft Data Hard Data

BME Estimation

BME Estimation Screen Map of BME mean estimation Map of BME error variance Time series of BME mean estimation

Spatial/Temporal estimation Spatial/Temporal Distribution Tabs BME estimation map at specific time BME estimation time series at specific station Each tab contains sub-tab displaying the list of plots

BME Estimation Parameters Spatial Estimation (Map) BME Parameters Estimation Grid Display Grid Temporal Estimation (Time Series) Estimation Parameters Display Parameter

BME Parameters Five parameters for BME estimation Maximum Spatial Distance Maximum Temporal Distance Space/Time Metric Max. Number of Data Point Order BMEGUI calculates default parameters based on the covariance model

Parameters for Spatial Estimation Estimation Grid Estimation Time Number of estimation point (X and Y) Area of estimation grid Include Data Points/Voronoi Points Display Grid Number of display point (X and Y)

Estimation Grid Data Points Estimation Grid Volonoi Points

Display Grid Estimation Points Display Grid

BME Spatial Estimation Input parameters, then click “Estimate” button BME parameters Estimation Grid Display Grid “Estimate” button

Maps of BME Mean Estimate and BME Error Variance Two new tabs Plot ID: xxxx(Mean) Plot ID: xxxx(Error) New entry in the list (Plot ID, EstimationTime)

Maps of BME Mean Estimate and BME Error Variance

Close Map Tabs Select the tab you want to close Click “Close Tab” button

Redraw Maps Select the plot from the list Click “Show” button

Remove Maps Select the plot from the list Click “Delete” button

Parameters for Temporal Estimation Estimation Parameters Station ID Estimation Period Display Parameter Scaling Factor

BME Temporal Estimation Input parameters, then click “Estimate” button BME parameters Estimation Parameters Display Parameter “Estimate” button

Time Series of BME Mean Estimate One new tab Plot ID: xxxx New entry in the list (Plot ID, Station ID)

Time Series of BME Mean Estimate Solid line: BME Mean Estimate Dotted line: Upper/Lower Bound (67% CI) Data Points (Hard/Uniform/Gaussian)

Scale Factor Change the scale of Gaussian type soft data to adjust the size on the plot Scale Factor = 0.1 Scale Factor = 1.0

Interaction with ArcGIS

Interaction with ArcGIS Point Layer File Exploratory Data Analysis (Spatial Distribution) Mean Trend Analysis (Raw/Smoothed Mean Trend) BME Mean/Error Estimation (Estimation Grid) Raster File (ArcASCII) BME Mean Estimation BME Error Estimation All files will be created in “Workspace”

Create Point Layer

Create Point Layer / Raster 1. Select Plot 2. Plot Button

ArcGIS Files Exploratory Analysis (Spatial Distribution) Mean Trend Vector data file (.csv) Mean Trend BME Estimation Vector data file (.csv): Estimation Point ArcASCII : BME Mean Raster ArcASCII : BME Error Variance Raster