Core-collapse supernovae as dust producers: what Spitzer is telling us

Slides:



Advertisements
Similar presentations
Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks Christine H. Chen (NOAO) IRS Disks Team astro-ph/
Advertisements

Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
SN 1987A spectacular physics Bruno Leibundgut ESO.
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
X-ray Properties of Five Galactic SNRs arXiv: Thomas G. Pannuti et al.
From Progenitor to Afterlife Roger Chevalier SN 1987AHST/SINS.
Supernovae from Massive Stars: light curves and spectral evolution Bruno Leibundgut ESO.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
Stellar Winds and Mass Loss Brian Baptista. Summary Observations of mass loss Mass loss parameters for different types of stars Winds colliding with the.
The origin of the most iron - poor star Stefania Marassi in collaboration with G. Chiaki, R. Schneider, M. Limongi, K. Omukai, T. Nozawa, A. Chieffi, N.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
Dust Production Factories in the Early Universe Takaya Nozawa ( National Astronomical Observatory of Japan ) 2015/05/25 - Formation of dust in very massive.
Massive-Star Supernovae as Major Dust Factories Ben E. K. Sugerman, Barbara Ercolano, M. J. Barlow, A. G. G. M. Tielens, Geoffrey C. Clayton, Albert A.
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Are Stellar Eruptions a Common Trait of SNe IIn? Baltimore, MD 06/29/11 Ori Fox NPP Fellow NASA Goddard Based on arXiv:
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
Revealing the mass of dust formed in the ejecta of SNe with ALMA ALMA で探る超新星爆発時におけるダスト形成量 Takaya Nozawa (IPMU, University of Tokyo) 2011/1/31 Collaborators;
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,
Y. Matsuo A), M. Hashimoto A), M. Ono A), S. Nagataki B), K. Kotake C), S. Yamada D), K. Yamashita E) Long Time Evolutionary Simulations in Supernova until.
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Study of the type IIP supernova 2008gz Roy et al. 2011, MNRAS accepted.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
(National Astronomical Observatory of Japan)
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL 7. Supernova Remnants.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
ALMA observations of Molecules in Supernova 1987A
Dust formation theory in astronomical environments
submitted to ApJ Letter Takaya Nozawa (Kavli IPMU)
SN 1987A: The Formation & Evolution of Dust in a Supernova Explosion
NAOJ, Division of theoretical astronomy
Keck Observations of Two Supernovae Hours After Explosion Shock-Breakout Flash Spectroscopy as a New Window into the Evolution and Death of Massive Stars.
Mid-infrared Observations of Aged Dusty Supernovae
Supernovae as sources of interstellar dust
Origin and Nature of Dust Grains in the Early Universe
(IPMU, University of Tokyo)
Consensus and issues on dust formation in supernovae
IIb型超新星爆発時のダスト形成と その放出過程
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
Dust formation theory in astronomical environments
低金属量銀河の星形成モード (Nagoya University) L. K. Hunt (Firenze)
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Formation of Dust Grains by Supernova Explosion
Dust Synthesis in Supernovae and Reprocessing in Supernova Remnants
Supernovae as sources of dust in the early universe
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Dust Enrichment by Supernova Explosions
Missing-Dust Problem in SNe: Approach from extremely young SNRs
Takaya Nozawa (IPMU, University of Tokyo)
爆燃Ia型超新星爆発時に おけるダスト形成
Formation of dust and molecules in supernovae
Formation and evolution of dust in hydrogen-poor supernovae
(National Astronomical Observatory of Japan)
Presentation transcript:

Core-collapse supernovae as dust producers: what Spitzer is telling us Rubina Kotak (Queen’s University Belfast)

Outline: Why core-collapse supernovae as dust producers? Model predictions Observational evidence Recent examples Dust mass estimates from SNe SNe as dust destroyers Open issues

Core-collapse SNe: major source of cosmic dust? Cernushi et al. (1967), Hoyle & Wickramasinghe (1970), Clayton (1979), Gehrz (1989), Tielens (1990), Dwek (1998), Todini & Ferrara (2001), Nozawa et al. (2003), … Growing interest as a source of dust at high-z Reddening of background quasars by damped Ly systems FIR emission from DLAs Gas-phase Zn/Cr ratios Detection of far-IR and mm emission from quasars and galaxies at 6.5 > z > 1 --> 107~108 M of dust

Dust at high redshifts The case of SDSS J1148+5251 z ~ 6.4: Smail et al. (1997), Hughes et al. (1998), Omonti et al. (2001,2003), Bertoldi et al. (2003), Maiolino et al. (2004), Robson et al. (2004), Beelen et al. (2006) + … The case of SDSS J1148+5251 z ~ 6.4: Age : 400 Myr (age of Universe ~ 890 Myr) Gas mass : 3x1010 M Dust mass: 2x108 M SFR : 100-3500 Myr-1 Rapid metal and dust enrichment of the ISM. enrichment due to AGB stars too slow CCSNe good candidates Fan et al. (2003) Dwek et al. (2007)

Carbon stars as dust producers at low metallicity? Carbon star (possibly) in Sculptor Galaxy: Z = 0.04 Z(Milky Way) At high redshifts, intermediate mass stars could form as soon as trace quantities of metals appear in the ISM => precursors of carbon stars could form relatively early. Require only ~400 Myr to reach AGB. BUT: -- How much carbon dust? (C dredge-up certain) -- SFR + IMF - dependent Sloan et al. (2009)

dust producers dust destroyers CCSNE dust producers dust destroyers Suitable materials: C, O, Mg, Al, Si, Fe Cooling: expansion + molecules hostile environment (UV, ) thermal sputtering grain-grain collisions …

Models predict 0.1 < M dust < 1 M per SN a few years after explosion e.g. Todini & Ferrara (2001), Nozawa et al. (2003), Nomoto et al. (2006) E.g. if all the refractory elements in a 25 Msun SN condensed into dust, then get 1 Msun of dust. Todini & Ferrara (2001)

What is the observational evidence?

Detecting dust in supernovae: Attenuation of spectral line profiles

[OI] line profiles in Type IIpec SN 1987A at 529 and 738 days post-explosion Danziger et al. (1991)

[OI] line profile in the type II-P SN 2004dj at ~900 days SN spherically symmetric distribution of optically-thin gas. Dust is represented by an opaque disk centred on the los with the flat surfaces parallel to this direction. [OI] line profile in the type II-P SN 2004dj at ~900 days

SN 1998S (type IIn): ejecta/CSM interaction, Dust formation in a cool dense shell behind the shock front. Pozzo et al. (2004)

Detecting dust in supernovae: Attenuation of spectral line profiles Thermal emission of dust grains Until 2003, ~13 cases of core-collapse SNe showing near-IR excesses BUT, -- new dust condensing in SN ejecta, or -- IR-echo due to pre-existing circumstellar dust?

INFRARED ECHO LIGHTCURVES

IR ECHO OR NEW DUST? Monitoring (Echo earlier + brighter) Bouchet et al. 1989, 93 Meikle et al 2006

Do all core-collapse SNe form dust? How much dust? When does dust form? Under what conditions? Molecules a necessary intermediate step? Will it survive? What is the composition, grain size? How does dust production vary with SN subtype? What is the influence (if any) of the environment? …

To assess the ubiquity of dust formation in core-collapse supernovae need: Sample of well-observed “normal” SNe (photometry + spectroscopy) Mid-IR monitoring extremely challenging from the ground. --> No mid-IR studies of SNe since SN 1987A

Detection of SiO SiO ~ 2x10-4 M Liu & Dalgarno model. SN 2005af (type IIP) SiO ~ 2x10-4 M Liu & Dalgarno model. Kotak et al. (2006)

Isothermal dust model Simple analytical model comprising a uniform sphere of isothermal dust grains (Lucy 1989; Osterbrock 1989) Free parameters: (for a given grain composition) grain temperature, sphere radius, grain number density scaling factor Guided by dust condensation calculations based on SN explosion models e.g. Kozasa et al. 1989, Todini & Ferrara (2001), Bianchi & Schneider (2007) Assume that dust of uniform no. density forms throughout the zone containing abundant refractory elements. Extent of this zone from nebular spectra ~ 2500 km/s

SN 2005af (II-P) Spitzer IRAC 3.6-8 μm 576d Age Temp. Md f (d) (K) (10-4 M) 214 800 0.015 0.07 571 420 4.0 0.32

Case study: SN 2004et (type II-Plateau) Extensive set of optical + mid-IR data for the most common type of core-collapse SN ---> evolution of SED

SED evolution: evidence for increasing emission due to dust 3-component black-body fits for days 300-1222: Hot: 5000 - 10000 K --> ejecta Warm: 450 - 700 K --> newly formed dust Cold: 100 - 130 K --> pre-existing dust NB: no attempt was made to match the broad emission feature / lines Optical data from Sahu et al. (2006)

Hot component: ~5000-7000 until 800d. Rise in temp. at last 2 epochs Warm component: 300-800d cooled and faded monotonically; BB surface never exceeded 1600 km/s => consistent with warm emission arising from newly-formed dust. Disfavour echo because a) would require a contrived cavity size b) line-shifts seen in the optical c) decline in optical light curve accelerated Cold component: roughly constant temperature throughout. High velocities rule out newly-formed dust

Example IDM fit: day 464 evidence for newly formed silicate dust SiO + silicate grains Amorphous carbon grains

Silicate dust model fits Temp (K) 900 650 400  (10µm) 2.8 3.6 11.5 M(SiO) 10-4 Msun 5.7 3.7 ~0.5 M(dust) 10-4 Msun 0.39 0.66 1.5 Fading of silicates 690+ d due to Increasing optical depth as more dust forms Increasing contribution from non-silicate dust (e.g. CDS) Silicate feature yields an additional constraint at each epoch => in spite of high , dust mass estimates are not just lower limits

The disappearance and reappearance of 04et 3.6µm Pre-explosion 1222 d 795 d 300 d

Cause of mid-IR rebrightening: ejecta/CSM collision Dust formation in a cool dense shell behind the reverse shock. 10 km/s RSG wind at ~6000 AU Wide boxy profiles + decrease from blue to red => dust

Origin of cold infrared source Echo from pre-existing dust? Applying an IR echo model => dust had to lie 10 pc from SN, => dust mass of 350 Msun (to reproduce luminosity) => cannot be due to the progenitor of SN 2004et More natural explanation: IR interstellar echo -- predicted by Wright (1980); Bode & Evans (1980), but never observed. For 04et, the cold component is well-fit by a single set of parameters from 300-795 d. Prediction: for a cavity of 10pc, expect constant IR luminosity for ~65 yrs.

The multi-faceted nature of SN 2004et Evidence for freshly condensing silicate dust Very-late time ejecta - circumstellar medium interaction => dust in cool dense shell Cold infrared component => IR echo from interstellar dust Disentanglement difficult!

Recent claim of a large dust mass in SN 2003gd (IIP) 0.02 M of dust -- Sugerman et al. (Science, 2006) Sugerman et al. (2006) Meikle et al. (2007) 3.6-8m/~700d upper lts. only 8.0m: 737 Jy 24m /~700d 10616 38090 Jy (same data) 8m difference 24m 670d

Recent claim of a large dust mass in SN 2003gd (IIP) Sugerman et al. (2006) 0.02 M of dust -- Sugerman et al. (Science, 2006) Sugerman et al. (2006) Meikle et al. (2007) 24m /~700d 10616 38090 Jy Error in 24m /~700d flux of Sugerman et al. Outer limit of dust-forming zone > metal line velocities from late-time spectra (~2000km/s)  unphysical Total luminosity > 4 x total radioactive luminosity deposited in ejecta  severe energy deficit Similar decline rates c.f. 87A, but invoke vastly different efficiencies Directly detected dust: SN 2003gd produced no more than few 10-5 M For details see Meikle et al. (2007)

Summary of SN dust mass estimates Type Dust mass (Msun) Technique Ref. 1987A II-Pec 7.5x10-4 mid-IR + opt. line attenuation Ercolano et al. (2007) 1998S IIn >2x10-3 optical + near-IR line attenuation Pozzo et al. (2004) 2006jc Ibn 3x10-4 near-IR + line attenuation Mattila et al.; Sakon et al., Smith et al. 1999em II-P ~10-4 optical line attenuation Elmhamdi et al. 2003gd 4x10-5 mid-IR Meikle et al. (2007) 2004et Few x 10-4 mid-IR + line attenuation Kotak et al. (2009)

Dust mass estimates from supernova remnants CasA: 3x10-3 Msun (Hines et al. 2004) at 80K 0.054-0.02 Msun (Rho et al. 2008) 2Msun Dunne et al. (2003); Krause et al. (2004) 0.2< Msun: sub-mm ~10-4 Msun (Dwek et al.): Fe needles; but Dunne et al. (2009): sub-mm polarization: 0.5-1 Msun if 100% efficiency of dust condensation SNR 1E 0102.2-7219: 8x10-4 Msun (Stanimirovic et al. 2005) -- 10-2 Msun (Rho et al. 2009) Crab, Kepler 10-3 -- 10-2 (Tenim et al. 2006, Blair et al. 2007); 1 Msun (Morgan et al. 2003); 0.1-1.2 Msun (Gomez et al. 2009): sub-mm

Dust Composition Cas A (Rho et al. 2008) 1st type Dust: 21mm-peak dust; Mg proto-silicate, amorphous (am) MgSiO3, am SiO2, FeO, and aluminum oxide (Al2O3). The compositions suggest the dust forms around inner-oxygen and S-Si layers. Total dust mass of 0.02 to 0.054 Msun (depending on dust composition) Featureless Dust Fe, C, Al2O3 (FeO)

Dust mass estimates from supernova remnants CasA: 3x10-3 Msun (Hines et al. 2004) at 80K 0.054-0.02 Msun (Rho et al. 2008) 2Msun Dunne et al. (2003); Krause et al. (2004) 0.2< Msun: sub-mm ~10-4 Msun (Dwek et al.): Fe needles; but Dunne et al. (2009): sub-mm polarization: 0.5-1 Msun if 100% efficiency of dust condensation SNR 1E 0102.2-7219: 8x10-4 Msun (Stanimirovic et al. 2005) -- 10-2 Msun (Rho et al. 2009) Crab, Kepler 10-3 -- 10-2 (Tenim et al. 2006, Blair et al. 2007); 1 Msun (Morgan et al. 2003); 0.1-1.2 Msun (Gomez et al. 2009): sub-mm

Molecules in SN ejecta 2004dj (IIP) 2004et (IIP)

Dust formation in all CCSNe? (Probably) yes for IIPs When does dust form? in IIPs, > few 100d Under what conditions? Molecules always necessary? all IIPs in our sample (6) show CO; some show SiO before few 100d (previously only seen in 1 SN: ‘87A) How much dust? Currently 10-3 - 10-5 M of dust i.e. 10-100x lower than needed. -- much more may exist in optically-thick clumps -- more modelling effort required How does dust production vary with SN subtype? -- currently, only few examples of other types: SN 1987A (II-pec), SN 1990I, 06jc (Ib), SN 1998S (IIn), …