Figure 1 A B C - + ERα patients Luminal A+B Adjuvant Endocrine Therapy

Slides:



Advertisements
Similar presentations
Breast Cancer Systemic Therapy for Early Stage Disease
Advertisements

Knight et al – Supplementary Table Supplemental Table 1: Cell line Densitometry AROSSIRT1 ARPE WI MCF10A HCT HCT116.
Everolimus in Postmenopausal Hormone-Receptor–Positive Advanced Breast Cancer N Engl J Med 2011 Dec 7. Presenstor : CR 周益聖 Instructor : VS 趙大中 財團法人台灣癌症臨床研究發展基金會.
MiRNA-drug resistance mechanisms Summary Hypothesis: The interplay between miRNAs, signaling pathways and epigenetic and genetic alterations are responsible.
Cancer Treatment from the DNA Perspective
Department of Surgery, United Christian Hospital Aromatase Inhibitors Current Use in Breast Cancer JHGR 16 Jan 2005 Dr. Sharon Chan Department of Surgery,
Supplementary Figure 1. Somatic mutation spectrum # Substitutions # Substitutions per Mb b c a Repeats Pseudogenes Whole genome Splice sites Non-coding.
Figure S1. RNA-seq results for caveolin-1 (Cav1). Upper panel: UCSC genome browser view. Lower panel: quantification o f Cav1 expression based on RNA-seq.
Dubsky P et al. Proc SABCS 2012;Abstract S4-3.
Principles of Hormonal Therapy Justus Apffelstaedt University of Stellenbosch These Power Point presentations are free to download only for academic purposes,
Supplemental Figure 1 The vast majority of alterations are shared between primary and metastatic tumors. Of the 434 total mutations, 344 (79%) were shared.
Functional interactions between calmodulin and estrogen receptor-α
Primary Mets Node Patient 1Patient 2Patient 3 Primary Mets Node Patient 1Patient 2Patient 3 Primary Mets Node Patient 1Patient 2Patient 3 Primary Mets.
Molecular profiling of residual TNBC after neoadjuvant chemotherapy Yonsei Genomics Center Hanna Lee.
Figure 1. Figure 2 ab p= p= *** Figure 3 a *** b cFos TP53 Beta actin cFos TP53 Beta actin.
Heterogeneity in hormone receptor positive breast cancer
Postmenopausal breast cancer patients included in the original Stockholm tamoxifen trial (n=2459) Stockholm 2 cohort (n=679) Stockholm 3 cohort (n=1780)
B Supplementary Figure S1A. Pre-amplification preserves mutant allele frequency and maintains sensitivity of ESR1-D538G mutation detection by ddPCR. A-B.
Targeting endocrine-resistance pathways in breast cancer
Estrogen-Regulated Genes Predict Survival in Hormone Receptor–Positive Breast Cancers J Clin Oncol 24: Daniel S. Oh, Melissa A. Troester,
Vignesh Ramachandran SMART Summer Research Program
San Antonio Breast Cancer Symposium 2016
Training Set Clinicopathological parameters of the training set
Estrogen receptor-α directly regulates the hypoxia inducible factor 1 pathway associated with antiestrogen response in breast cancer PNAS (49)
Figure 2. DNA methylation mediated MORT gene silencing is linked to luminal, receptor positive breast cancers. (A) MORT expression level plotted versus.
Progesterone receptor
Loyola Marymount University
Acquired Resistance to Crizotinib from a Mutation in CD74-ROS1 Mark M
Supplementary Figure 1: Clinical parameters of the breast tumor samples used for the study. IDC = Invasive ductal carcinoma and ILC= Invasive Lobular.
Figure 2. A consort diagram showing the flowchart of the trial
Multimodal Assessment of Estrogen Receptor mRNA Profiles to Quantify Estrogen Pathway Activity in Breast Tumors  Anita Muthukaruppan, Annette Lasham,
Treatment of Severe Postmenopausal Endometriosis With an Aromatase Inhibitor 4  Kazuto Takayama, Khaled Zeitoun, Robert T Gunby, Hironobu Sasano, Bruce.
Supplementary Table 1. (A) S100β Validation set (n=76 ER-positive and ER-negative patients). (B) S100β Validation set (n=59 ER-positive patients). Association.
a b p= 0,2 0,4 0,6 0,8 1 1,2 BCL11A * Relativeexpression 0,2 0,4 0,6
Differential expression of G-protein-coupled estrogen receptor-30 in human myometrial and uterine leiomyoma smooth muscle  Ruijuan Tian, M.Sc., Zengyong.
Volume 18, Issue 10, Pages (March 2017)
Loyola Marymount University
Volume 39, Issue 4, Pages (August 2010)
Volume 17, Issue 4, Pages (April 2010)
Volume 54, Issue 1, Pages (April 2014)
Volume 136, Issue 2, Pages (February 2009)
Gene expression and genomic profiling reveal estrogen-independent ER transcriptional activity. Gene expression and genomic profiling reveal estrogen-independent.
CDK4/6 Biomarkers: Issues and Opportunities
Supplemental Figure 1A – I
ABSTRACT ABCSG 6a MA17-1 MA.17R NSABP B-33. Extended Adjuvant Therapy With Aromatase Inhibitor Among Postmenopausal Breast Cancer.
Volume 17, Issue 4, Pages (April 2010)
Tomoyasu Hattori, Lukasz Stawski, Sashidhar S
Volume 13, Issue 2, Pages (February 2008)
Diverse abnormalities manifest in RNA
Figure 7. Primary cells from prostate tumours are more sensitive to ML than adjacent non-cancerous cells from the ... Figure 7. Primary cells from.
CDK4/6 Biomarkers: Issues and Opportunities
Volume 54, Issue 5, Pages (June 2014)
Volume 20, Issue 4, Pages (October 2011)
Volume 18, Issue 6, Pages (December 2015)
Loyola Marymount University
MELK Promotes Melanoma Growth by Stimulating the NF-κB Pathway
TSA induces transcription from CCND1-MS2 alleles under CCND1 promoter control. TSA induces transcription from CCND1-MS2 alleles under CCND1 promoter control.
Loyola Marymount University
Molecular Therapy - Nucleic Acids
Esteller, New England Journal of Medicine, 2008
Loyola Marymount University
Presentation by: Bryan Lopez UCF - BSC 4434 Professor Xiaoman Li
Loyola Marymount University
MW (kDa) 2 µg 0.5 µg Supplementary Figure S1. SDS-PAGE under reducing condition analysis (Coomassie brilliant blue staining) of.
Molecular Therapy - Nucleic Acids
Mutation of the Ca2+ Channel β Subunit Gene Cchb4 Is Associated with Ataxia and Seizures in the Lethargic (lh) Mouse  Daniel L Burgess, Julie M Jones,
Inter-laboratory cohort Prognostication cohort
VC KX-01 Total Src p-Y416 Src Supplementary Figure S1. KX-01 at low dose inhibited phosphorylation of Src in MDA-MB-231 xenografts.
Molecular heterogeneity can drive mixed response and treatment failure in EGC. A, PET images from Patient #4 obtained before treatment and upon disease.
One potential implementation for the use of outlier kinase profiling and targeting for clinical management of pancreatic cancer in a precision medicine.
Presentation transcript:

Figure 1 A B C - + ERα patients Luminal A+B Adjuvant Endocrine Therapy Biopsies from patient first relapse SERM=Tamoxifen(n=30) AI=Letrozole/Anastrozole (n=37) Copy Number CYP19A1/ESR1TM Normalizer:TERTTM FISH (15q21.2 locus) Normalizer FISH (15 α-Satellite) Primary Surgical Material TTR=79 months (16-181) TTR=44 months (3-104) Discovery Dataset A Relapse Metastatic Biopsy 15 yrs. 8 TAM 6 1/30 CYP19A1 4/30 ESR1 4 3 2 Copy Number Gain 0.5 Copy Number Loss Copy Number (TAQMAN) normalized to normal matched tissue 1t 2t 4t 5t 6t 10t 11t 12t 13t 14t 15t 17t 19t 20t 21t 22t 23t 24t 26t 27t 28t 30t 32t 33t 35t 36t 37t 40t 42t 43t 8 Patient # CYP19A1 ESR1 AI 6/37 9/37 6 4 3 2 0.5 2t 4t 5t 7t 8t 9t 10t 11t 12t 13t 14t 15t 17t 18t 19t 20t 21t 22t 24t 25t 26t 28t 29t 30t 32t 33t 34t 35t 36t 37t 38t 39t 41t 43t 46t 47t 49t Patient # B C ERα patients Luminal A+B SERM= Tam (13) AI=Let/Ana (17) Copy NumberTM CYP19A1/ESR1/ NormalizerTM TERT/RNASEP/GABRB3 FISH (15q21.2 locus) Normalizer FISH (15 α-Satellite) Primary Relapse Validation Dataset TTR=69 months TTR=54 months PDXs Dataset Pleural effusion/Ascites 15 yrs. TAM 8 1/19 CYP19A1/TERT 6 CYP19A1/RNASEP 8 4 CYP19A1/TERT 3 6 CYP19A1/RNASEP 2 Copy Number (TAQMAN) normalized to normal matched tissue 0.5 4 Copy Number (TAQMAN) normalized to normal N19 4t-v 5t-v 12t-v 25t-v 16t-v 3t-v 1t-v 11t-v 31t-v 35t-v 24t-v 36t-v 2t-v 63t-v 65t-v 68t-v 70t-v 73t-v 64t-v 3 2 15 AI 0.5 6/19 CYP19A1/TERT 10 CYP19A1/RNASEP BA-8 BPE-12 BA-11 BA-1 CTC288 BPE2-0 CTC223 5 MaCa-3366 3 2 0.5 History of AI treatment - + NA 26t-v 57t-v 58t-v 60t-v 62t-v 49t-v 46t-v 39t-v 50t-v 40t-v 41t-v 44t-v 48t-v 54t-v 27t-v 13t-v 59t-v 78t-v 80t-v

AROMATASE INHIBITORS Discovery Dataset Figure 2 A 11T 20T 11P 20P 33T 12T 33P 12P Metastasis Primary AROMATASE INHIBITORS Discovery Dataset 15α Satellite CYP19A1 B C 12P 33P 33T 12T TP53 48% ESR1 19% GATA3 34% MAP3K1 20% PIK3CA 44% 32% 27% TAM n=22 AI n=29 ID Ratio 11T 3.00 11P 1.49 20T 5.8 20P 1.38 33T 2.97 33P 1.22 12T 2.68 12P 1.27 AI n=4 D TAMOXIFEN PI3K 1 1 1 1 1 1 4 MAP3K1 1 1 6 1 1 1 8 GATA3 1 1 1 1 1 1 TP53 1 1 5 2 1 3 4 ESR1 1 4 1 1 1 2 Patient ID 1t 2t 4t 5t 6t 10t 11t 12t 13t 14t 15t 17t 19t 20t 21t 22t 24t 26t 27t 23t 28t 30t 32t 33t 35t 36t 37t 40t 42t 43t AI PI3K 1 6 2 2 1 9 9 1 1 2 1 2 25 MAP3K1 1 7 18 1 2 27 GATA3 1 2 1 7 5 3 1 1 1 4 TP53 1 1 1 1 1 1 8 4 2 3 1 4 14 1 ESR1 5 6 1 2 1 11 Patient ID 2t 4t 5t 7t 8t 9t 10t 11t 12t 13t 14t 15t 17t 18t 19t 20t 22t 24t 25t 21t 26t 28t 29t 30t 32t 33t 34t 35t 36t 37t 38t 39t 41t 43t 46t 47t 49t ION reporter calls Sample not available N TP53 truncating SNVs Not mutated ERα activating SNVs N Mutated (missense/nonsense/indels/HIGH confidence) N ERα potential activating SNVs

Figure 3 A B C E D F CYP19A1 RT-qPCR single cell RNA-FISH CYP19A1 WB DNA FISH A B MCF7 cells LTED cells CYP19A1 ESR1 6 Copy Number(TAQMAN) normalized to MCF10A Copy Number Gain 3 Copy Number CYP19A1/ESR1TM Normalizer:TERTTM .5 CYP19A1 15α Satellite MCF7 LTED Copy Number Loss C CYP19A1 RT-qPCR E single cell RNA-FISH Frequency mRNA per cell (#) 5 10 15 20 0.2 0.4 0.6 0.8 20 Cyp19A1 mRNA 1 Cyp19A1 mRNA **** 20 INTRON EXON 10 Fold change over MCF7 MCF7 MCF7T MCF7F LTED LTEDT LTEDF MCF7 LTED MCF7T MCF7F LTEDT LTEDF D CYP19A1 WB CYP19A1 50kDA ACTIN MCF7 LTED MCF7T MCF7F LTEDT LTEDF F Transcriptional activation estrogen target genes mock E2 mock And. 40 * 3 CYP19A1wt MCF7 30 2 20 10 1 TFF1 EGR3 CA12 TFF1 EGR3 CA12 mRNA fold change vs. mock 8 * mock E2 mock And. 6 8 * 20 4 * * 6 LTED CYP19A1amp 15 * 2 4 10 * 5 2 * AND - + - + - + AI TFF1 EGR3 CA12 TFF1 EGR3 CA12 TFF1 EGR3 CA12

Figure 4 A B C D E F G TFF1 TMPRSS3 LTED MCF7 0.03 > > > LTED CCND1 0.03 > > > > 51974 binding sites LTED RPKM MCF7 MYC 0.03 > 300 LTED 300 MCF7 -2.5kb +2.5kb 1 B C D siC 2 MCF7 2 LTED LTED siCYP19A1-1 siCYP19A1-2 100 MTT (abs 595) * * MTT (abs 595) 1 1 * * * ** * Proliferation (SRB) (vs. DMSO/siC) 1 1uM mock 1uM 100nM 10uM 25uM 50uM 75uM mock 100uM 175uM 200uM 225uM 250uM 100nM 10uM 25uM 50uM 75uM 100uM mock 1uM 5uM 100nM 500nM 10uM 50uM Letrozole (concentration) E MCF7 F TTFR +E2 100 4 H.R.= 0.43 (0.22-0.82) p (Log-Rank= 0.0112) -E2 3 * * * * * * * * 2 50 CYP19A1amp Percent Relapse-Free SRB (CYP1A1 o.e/WT.) CYP19A1wt 1 50 100 mock 50nM 1uM 5uM 100nM 500nM 10uM 50uM G TAM adjuvant AI adjuvant Primary Metastatic Peripheral Aromatase activity Local Aromatase activity Treatment strategy Increased Cholesterol biosynthesis GENETIC EPIGENETIC