Microreactors: materials, fabrication, catalysis sami.franssila@aalto.fi
Microreactor Tiggelaar PhD thesis, Twente
Microreactors Small volume good if expensive and/or dangerous chemicals Fast reactions because small diffusion distances Large surface area (either positive or negative effect) Good temperature control and fast ramp rates Good flow control because of laminar flow Besser: J. Vac. Sci. Technol. B 21.2., Mar/Apr 2003
Silicon microreactors Uniform temperature due to high thermal conductivity of silicon (also due to small dimensions of microstructures). This is beneficial because it prevents hot spot creation, and enables highly exothermic and explosive reactions to be studied safely.
Microhotplate (1) Sensors and Actuators B 68 Ž2000. 223–233
Microhotplate (2) Sensors and Actuators B 68 Ž2000. 223–233
Linear microreactor R.M. Tiggelaar et al. / Sensors and Actuators A 119 (2005) 196–205
A comprehensive article P Knapkiewicz: The silicon–glass microreactor with embedded sensors—technology and results of preliminary qualitative tests, toward intelligent microreaction plant, J. Micromech. Microeng. 23 (2013) 035014 (10pp) doi:10.1088/0960-1317/23/3/035014
Overview J. Micromech. Microeng. 23 (2013) 035014
J. Micromech. Microeng. 23 (2013) 035014
Continuos fluid + droplets J. Micromech. Microeng. 23 (2013) 035014
J. Micromech. Microeng. 23 (2013) 035014
J. Micromech. Microeng. 23 (2013) 035014
High pressure reactor Tiggelaar
A single reaction spot J.Micromech.Microeng. 2011
Droplet movement
Digital microreactor
Multiphase flow Javier Atencia & David J. Beebe
Droplet reactors Cells or microbeads are separated from each other by oil plugs. In theory, thousands of droplets/minute = thousands of replicates of your experiment Javier Atencia & David J. Beebe
Thermal isolation Silicon is good because high thermal conductivity ensures uniform temperature Silicon is bad because heat spreads efficiently and local heating is impossible Black area = silicon wafer White = etched area
Heated nebulizer chip (1) Nebulizer gas enters from a thru-wafer via-hole P. Östman, Lab. Chip., 2006, p948 P. Östman, Anal.Chem. 2006, p. 3027 S. Franssila, J.MEMS 2006, p. 1251
Heated nebulizer chip (2) Saarela et al, 2007
Glass microprocessing Ville Saarela et al., µTAS 2006, Tokio
Thermal isolation, LC
Gradient generator Langmuir 2000, 16, 8311-8316
Lamination mixing
Radiolabeling synthesis Quake et al: Radiolabeled Imaging Probe Using Integrated Microfluidics
Radioactive labeling reactor Quake et al: Radiolabeled Imaging Probe Using Integrated Microfluidics
Buried channels (1) Top: mask layout (1–3) sealable channels; (4) gradually varying depth design; (5) unsealable mask window for access holes or nano-scale holes in the oxide layer; (6) non-uniform channel. J. Micromech. Microeng. 20 (2010) 045013 (8pp) doi:10.1088/0960-1317/20/4/045013
Buried channels (2)
Fluidic connectors Fluidic connectors Ville Saarela, TKK
Reactor packaging J. Micromech. Microeng. 23 (2013) 035014
The complete system J. Micromech. Microeng. 23 (2013) 035014
On-the-spot 4 topics, 4 groups of ca. 4 people 25 min to study the article 4*5 min short talks to explain key features: -materials/surfaces & compatibility -fluid flow: pumping and valving -thermal characteristics -sensors-detectors
1. TiO2 photocatalytic J. Micromech. Microeng. 25 (2015) 025006
2. Nanoparticle synthesis small 2014, 10, No. 6, 1076–1080
small 2014, 10, No. 6, 1076–1080
3. Catalytic microreactor Chemical Engineering Journal 135S (2008) S317–S326
4. PDMS-glass synthetic reactor Lab Chip, 2002, 2, 197–202
Lab Chip, 2002, 2, 197–202