DHCAL TECH PROTO READOUT PROPOSAL

Slides:



Advertisements
Similar presentations
Jeudi 19 février 2009 Status of SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin-Chassard, Christophe de La.
Advertisements

R&D for ECAL VFE technology prototype -Gerard Bohner -Jacques Lecoq -Samuel Manen LPC Clermond-Ferrand, Fr -Christophe de La Taille -Julien Fleury -Gisèle.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
RPC Update José Repond Argonne National Laboratory American Working Group On Linear Collider Calorimetry 24 November 2003 What’s new since September…
RPC Update José Repond Argonne National Laboratory American Working Group On Linear Collider Calorimetry 16 September 2003 What’s new since Cornell…
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
MR (7/7/05) T2K electronics Beam structure ~ 8 (9?) bunches / spill bunch width ~ 60 nsec bunch separation ~ 600 nsec spill duration ~ 5  sec Time between.
PMF: front end board for the ATLAS Luminometer ALFA TWEPP 2008 – 19 th September 2008 Parallel Session B6 – Programmable logic, boards, crates and systems.
Readout ASIC for SiPM detector of the CTA new generation camera (ALPS) N.Fouque, R. Hermel, F. Mehrez, Sylvie Rosier-Lees LAPP (Laboratoire d’Annecy le.
Towards an RPC-based HCAL Design Stephen R. Magill Argonne National Laboratory Digital HCAL for an E-Flow Calorimeter Use of RPCs for DHCAL RPC Design.
A Readout Electronics for MAPMT Matteo Turisini – E. Cisbani Italian National Institute of Health – INFN Rome 1 JLab/CLAS12 RICH Meeting - 16/Nov/2011.
Large area photodetection for Water Cerenkov detectors PMm 2 proposal: Front End Electronics MAROC ASIC Pierre BARRILLON, Sylvie BLIN, Jean-Eric CAMPAGNE,
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
Vendredi 18 décembre 2015 Status report on SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin- Chassard, Christophe.
Towards a 1m 3 Glass RPC HCAL prototype with multi-threshold readout M. Vander Donckt for the CALICE - SDHCAL group.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
Test results of Multi-gap RPC Test Chambers for a Digital HCAL  Geometrical design  Test setup  Signal: avalanche mode and streamer mode  Comparison.
A Hadron Calorimeter with Resistive Plate Chambers José Repond Argonne National Laboratory CALOR 2006, Chicago, June 5 – 9, 2006.
European DHCAL development European DHCAL development CIEMAT,IPNL,LAL, LAPP,LLR, PROTVINO, SACLAY CIEMAT,IPNL,LAL, LAPP,LLR, PROTVINO, SACLAY Status :
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
DHCAL Jan Blaha R&D is in framework of the CALICE collaboration CLIC08 Workshop CERN, 14 – 17 October 2008.
HaRDROC performance IN2P3/LAL+IPNL+LLR R. GAGLIONE, I. LAKTINEH, H. MATHEZ IN2P3/IPNL LYON M. BOUCHEL, J. FLEURY, C. de LA TAILLE, G. MARTIN-CHASSARD,
SDHCAL. outline  SDHCAL concept, validation and construction  Test Beam and technological prototype performance  Perspectives and Conclusion  SDHCAL.
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
1 Second generation Front-end chip for H-Cal SiPM readout : SPIROC Réunion EUDET France – LAL – jeudi 5 avril 2007 M. Bouchel, F. Dulucq, J. Fleury, C.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
CSNSM SPACIROC S. Ahmad, P. Barrillon, S. Blin, S. Dagoret, F. Dulucq, C. de La Taille IN2P3-OMEGA LAL Orsay, France Y. Kawasaki - RIKEN,Japan I. Hirokazu.
Electronics for Si-W calorimeter LCWS06 Bangalore – March, 10 th Gérard Bohner, Pascal Gay, Jacques Lecoq Samuel Manen, Laurent Royer Michel Bouchel, Bernard.
VFE & PCB Status & schedule of production Presented by Julien Fleury Christophe de La Taille, Julien Fleury, Gisèle Martin-Chassard.
Front end electronics for the Tile HCAL prototype Felix Sefkow DESY CALICE Collaboration ECFA workshop Durham September 1, 2004.
SKIROC status Calice meeting – Kobe – 10/05/2007.
Tuesday, 20 May 2003OPERA Collaboration Meeting - Gran Sasso1 Status of front-end electronics for the OPERA Target Tracker LAL Orsay S.BONDIL, J. BOUCROT,
CALICE ECAL meeting VFE ASIC Next & next to next version 17 Janvier 2006, LAL Orsay.
Status of front-end electronics for the OPERA Target Tracker
STATUS OF SPIROC measurement
A General Purpose Charge Readout Chip for TPC Applications
ECAL front-end electronic status
The European DHCAL status
Digital HCAL readout studies
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
CTA-LST meeting February 2015
Performance of timing-RPC prototypes with relativistic heavy ions
A proposal to equip the high eta muon stations with High Rate GRPC
Construction and Testing of a Digital Hadron Calorimeter Prototype
R&D on large photodetectors and readout electronics FJPPL KEK/Orsay JE Campagne, S. Conforti, F. Dulucq, C. de La Taille, G. Martin-Chassard,, A.
Semi-Digital Hadronic CALorimeter
Electronics for Si-W calorimeter
Multi-Anode ReadOut Chip for MaPMTs: MAROC3 MEASUREMENTS
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
Electronics for the E-CAL physics prototype
Christophe de La Taille, Julien Fleury, Gisèle Martin-Chassard
Status of n-XYTER read-out chain at GSI
Christophe de La Taille, Julien Fleury, Gisèle Martin-Chassard
Felix Sefkow CALICE/EUDET electronics meeting CERN, July 12, 2007
Han Jifeng BESIII MUON GROUP IHEP, CAS
STATUS OF SKIROC and ECAL FE PCB
Christophe de La Taille * Gisèle Martin-Chassard *
ECAL Electronics Status
SKIROC status Calice meeting – Kobe – 10/05/2007.
Status of SPIROC: Next generation of SPIROC
HaRDROC status: (Hadronic RPC Detector Read Out Chip for DHCAL)
HARDROC STATUS 17 mar 2008.
HaRDROC status: (Hadronic RPC Detector Read Out Chip for DHCAL)
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
Pre-installation Tests of the LHCb Muon Chambers
AIMS 1- Build SDHCAL prototype of 1m3 as close as possible to the one
Signal processing for High Granularity Calorimeter
Presented by T. Suomijärvi
Presentation transcript:

DHCAL TECH PROTO READOUT PROPOSAL Calice Meeting, Oct. 13th Michel Bouchel Christophe de La Taille Gisèle Martin Julien Fleury

The context : Technologic R&D A work group to study final ASIC issues LLR, Palaiseau ; IPN, Lyon ; LAL, Orsay In parallel with ECAL ASIC study  Because most issues are the same - Digital backend - Power pulsing Be able to put a techno proto layer in physic proto (just like ECAL)

Our starting point : The detector : RPC Signal Pad Mylar sheet Resistive paint 1.1mm Glass sheet Glass Normal floating glass Resistive paint Graphite or conductive ink Spray or silk screen printing Controlled resistivity (0.1 – 10 MΩ/) Spacer Fishing line RPC is simple and reliable No aging effect has ever been observed for glass RPC Easy to construct, low cost High efficiency and good position resolution perfect for a DHCAL 1.2mm gas gap GND 1.1mm Glass sheet Resistive paint -HV Mylar sheet Aluminum foil Charged particles ©Lei Xia, Argonne, LCWS05

Our starting point (2) : RPC signal: avalanche and streamer Gas mixture R134A:IsoButane:SF6 (Ar:R134A:Isobutane) Typical operating voltage: 7 – 10 KV Two types of signal Avalanche 2 – 10+ mV, without amplifier Fast rising time Signal width ~ 20ns Streamer > 100 mV, without amplifier Signal width 40 – 100+ ns Multiple (N) streamers per particle passing is normal N = 1 - 3 Avalanche signal No amplification Streamer signal No amplification ©Lei Xia, Argonne, LCWS05

Our starting point (3) RPC signal: efficiency Signal charge and efficiency is a function of operating voltage At low voltage: avalanche plateau (6.6 – 7.4 KV in plot) Almost pure avalanche signal Efficiency > 95% Streamer component < 3% Avalanche charge shows “threshold”, and a linear increase At higher voltage: streamer region Avalanche mode is our preferred running mode For a DHCAL, small signal pads (~ 1 x 1 cm2) are needed Digital readout Cross-talk / charge sharing between pads Noise rate ©Lei Xia, Argonne, LCWS05

The cold machine Little time between bunch crossing (300ns) Much time between trains (199ms) Data stored in RAM ASIC during train time Time between two trains: 200ms (5 Hz) Time between two bunch crossing: 337 ns Train length : 2820 bunch X (950 us)

Electronic requirements Simple analogue FE (Threshold detection) Multi-channel ASIC (64, 128, 256 ?) Channel by channel threshold tuning ? Multi-purpose preamp ? Avalanche Streamer GEMs Self-trigger Power pulsing (ASIC in the detector) Thickness constraint

DHCAL_TECH1 : Block scheme Very low counting rate Trigger on all channel OR (is there an optimum on the trigger) Low memory depht (how much low) Data internally saved during bunch train Data transfered to DAQ during inter-bunch 64 channels for multi-anode PM Close to MAROC chip

MAROC chip (Multi-Anode Read-Out Chip) Technology SiGe 0.35 m Chip area 12 mm2 power supply 3.3V Consumption 350 mW Pin count 228 pins Package CQFP240 Read out of PM64 64 inputs 64 trigger output 1 MUX charge output

4 discriminator thresholds MAROC block scheme Hold signal Photomultiplicator Photons Variable Gain Preamp. Slow Shaper S&H Bipolar Fast Shaper Unipolar 64 Tri g ger outputs Gain correction (6 bits) 4 discriminator thresholds (4*11bits DACs) Multiplexed charge output cmd_LUCID FS_choice LUCID

The analogue front-end A simple current conveyor (MAROC front-end) super common base architecture To ensure low input impedance To allow impedance tuning and avoid reflexions ? Measurement from OPERA-ROC FE ASIC

Physicist input needed ! RPC RPC measurement : What charge created when fired ? 0.1-5pC (D. Underwood LCWS2004) 3.4pC (V. Ammosov, LCWS2004) Rising time ? Falling time ? With what dispersion ? 2%/1m² (V. Ammosov, LCWS2004) Dark current (1µA/m² @ 9kV)? V. Ammosov, LCWS2004 Fancy effect ? Noise (0.5Hz/cm²)? V. Ammosov, LCWS2004 Trigger area : How many pixels per trigger ? 64, 128, 256 ? Optimisation with a simulation ?

Schedule Design & layout Foundry 1st proto Test on 1st prototype Today January 2006 April 2006 Summer 2006 Need to connect DHCAL_TECH1 to a RPC before any other iteration Need a strong interaction with RPC experts

Conclusion Work just begin on DHCAL front-end 2 weeks old Some ideas on front-end architecture Analogue blocks already exist Big work on digital block crucial interactions: With RPC experts for the front-end interface With DAQ experts for backend interface