Computer and Robot Vision I

Slides:



Advertisements
Similar presentations
Request Dispatching for Cheap Energy Prices in Cloud Data Centers
Advertisements

SpringerLink Training Kit
Luminosity measurements at Hadron Colliders
From Word Embeddings To Document Distances
Choosing a Dental Plan Student Name
Virtual Environments and Computer Graphics
Chương 1: CÁC PHƯƠNG THỨC GIAO DỊCH TRÊN THỊ TRƯỜNG THẾ GIỚI
THỰC TIỄN KINH DOANH TRONG CỘNG ĐỒNG KINH TẾ ASEAN –
D. Phát triển thương hiệu
NHỮNG VẤN ĐỀ NỔI BẬT CỦA NỀN KINH TẾ VIỆT NAM GIAI ĐOẠN
Điều trị chống huyết khối trong tai biến mạch máu não
BÖnh Parkinson PGS.TS.BS NGUYỄN TRỌNG HƯNG BỆNH VIỆN LÃO KHOA TRUNG ƯƠNG TRƯỜNG ĐẠI HỌC Y HÀ NỘI Bác Ninh 2013.
Nasal Cannula X particulate mask
Evolving Architecture for Beyond the Standard Model
HF NOISE FILTERS PERFORMANCE
Electronics for Pedestrians – Passive Components –
Parameterization of Tabulated BRDFs Ian Mallett (me), Cem Yuksel
L-Systems and Affine Transformations
CMSC423: Bioinformatic Algorithms, Databases and Tools
Some aspect concerning the LMDZ dynamical core and its use
Bayesian Confidence Limits and Intervals
实习总结 (Internship Summary)
Current State of Japanese Economy under Negative Interest Rate and Proposed Remedies Naoyuki Yoshino Dean Asian Development Bank Institute Professor Emeritus,
Front End Electronics for SOI Monolithic Pixel Sensor
Face Recognition Monday, February 1, 2016.
Solving Rubik's Cube By: Etai Nativ.
CS284 Paper Presentation Arpad Kovacs
انتقال حرارت 2 خانم خسرویار.
Summer Student Program First results
Theoretical Results on Neutrinos
HERMESでのHard Exclusive生成過程による 核子内クォーク全角運動量についての研究
Wavelet Coherence & Cross-Wavelet Transform
yaSpMV: Yet Another SpMV Framework on GPUs
Creating Synthetic Microdata for Higher Educational Use in Japan: Reproduction of Distribution Type based on the Descriptive Statistics Kiyomi Shirakawa.
MOCLA02 Design of a Compact L-­band Transverse Deflecting Cavity with Arbitrary Polarizations for the SACLA Injector Sep. 14th, 2015 H. Maesaka, T. Asaka,
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Fuel cell development program for electric vehicle
Overview of TST-2 Experiment
Optomechanics with atoms
داده کاوی سئوالات نمونه
Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo Cecile Deprez and Rene Warnant University of Liege, Belgium  
ლექცია 4 - ფული და ინფლაცია
10. predavanje Novac i financijski sustav
Wissenschaftliche Aussprache zur Dissertation
FLUORECENCE MICROSCOPY SUPERRESOLUTION BLINK MICROSCOPY ON THE BASIS OF ENGINEERED DARK STATES* *Christian Steinhauer, Carsten Forthmann, Jan Vogelsang,
Particle acceleration during the gamma-ray flares of the Crab Nebular
Interpretations of the Derivative Gottfried Wilhelm Leibniz
Advisor: Chiuyuan Chen Student: Shao-Chun Lin
Widow Rockfish Assessment
SiW-ECAL Beam Test 2015 Kick-Off meeting
On Robust Neighbor Discovery in Mobile Wireless Networks
Chapter 6 并发:死锁和饥饿 Operating Systems: Internals and Design Principles
You NEED your book!!! Frequency Distribution
Y V =0 a V =V0 x b b V =0 z
Fairness-oriented Scheduling Support for Multicore Systems
Climate-Energy-Policy Interaction
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Ch48 Statistics by Chtan FYHSKulai
The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities.
Measure Twice and Cut Once: Robust Dynamic Voltage Scaling for FPGAs
Online Learning: An Introduction
Factor Based Index of Systemic Stress (FISS)
What is Chemistry? Chemistry is: the study of matter & the changes it undergoes Composition Structure Properties Energy changes.
THE BERRY PHASE OF A BOGOLIUBOV QUASIPARTICLE IN AN ABRIKOSOV VORTEX*
Quantum-classical transition in optical twin beams and experimental applications to quantum metrology Ivano Ruo-Berchera Frascati.
The Toroidal Sporadic Source: Understanding Temporal Variations
FW 3.4: More Circle Practice
ارائه یک روش حل مبتنی بر استراتژی های تکاملی گروه بندی برای حل مسئله بسته بندی اقلام در ظروف
Decision Procedures Christoph M. Wintersteiger 9/11/2017 3:14 PM
Limits on Anomalous WWγ and WWZ Couplings from DØ
Presentation transcript:

Computer and Robot Vision I Chapter 3 Binary Machine Vision: Region Analysis Presented by: 傅楸善 & 林政安 0932 837 981 r99944038@ntu.edu.tw 指導教授: 傅楸善 博士 Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.

3.1 Introduction regions: produced by connected components labeling operator region properties: to store as a measurement vector input to classifier region intensity histogram: gray level values for all pixels mean gray level value: summary statistics of regions intensity DC & CV Lab. CSIE NTU

3.2 Region Properties bounding rectangle: smallest rectangle circumscribes the region area: centroid: 1 2 3 4 5 6 7 R = 1*2+2*5+3*4+4*4+5*3+6*3 = 55+18 = 73 / 21 A=21 r=3.476 c=4.095 DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) border pixel: has some neighboring pixel outside the region : 4-connected perimeter: if 8-connectivity for inside and outside : 8-connected perimeter: if 4-connectivity for inside and outside DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) ( 1, 0 ) N8(r,c) R 𝑃 4 ={ 1,0 , 1,1 , 1,2 , 2,1 , 0,1 } DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) ( 1, 1 ) N8(r,c) R 𝑃 4 ={ 1,0 , 1,1 , 1,2 , 2,1 , 0,1 } DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) ( 1, 0 ) N4(r,c) R 𝑃 8 ={ 1,0 , 1,2 , 0,1 ,(2,1)} DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) ( 1, 1 ) N4(r,c) R 𝑃 8 ={ 1,0 , 1,2 , 0,1 ,(2,1)} DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) Eg: center is in but not in for 𝑃 4 ={ 1,0 , 1,1 , 1,2 , 0,1 , 2,1 } 𝑃 8 ={ 1,0 , 1,2 , 0,1 ,(2,1)} DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) length of perimeter , successive pixels neighbors where k+1 is computed modulo K i.e. DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) 𝑃 4 = 1,0 , 1,1 , 2,1 , 1,1 , 1,2 , 1,1 , 0,1 ,(1,1) DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) 𝑃 8 = 1,0 , 2,1 , 1,2 ,(0,1) DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) length of perimeter where k+1 is computed modulo K |P8| K = 0, 1, 2, 3, DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) mean distance R from the centroid to the shape boundary standard deviation R of distances from centroid to boundary DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) 𝑃 4 = 1,0 , 1,1 , 2,1 , 1,1 , 1,2 , 1,1 , 0,1 ,(1,1) DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) 𝑃 8 = 1,0 , 2,1 , 1,2 ,(0,1) DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) 𝑃 4 = 1,0 , 1,1 , 2,1 , 1,1 , 1,2 , 1,1 , 0,1 ,(1,1) DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) 𝑃 8 = 1,0 , 2,1 , 1,2 ,(0,1) DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) Haralick shows that has properties: 1. digital shape circular, increases monotonically 2. similar for similar digital/continuous shapes 3. orientation (rotation) and area (scale) independent ??? DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) Average gray level (intensity) Gray level (intensity) variance DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) microtexture properties: A function of co-occurrence matrix S: set of pixels in designated spatial relationship e.g. 4-neighbors Define the region’s co-occurrence matrix P by DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) 0 1 2 3 1 2 3 DC & CV Lab. CSIE NTU

The Application of Texture Analysis on Defect Detection P.14 Reference 紋理分析於瑕疵檢測的應用 The Application of Texture Analysis on Defect Detection P.14 DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) texture second moment (Haralick, Shanmugam, and Dinstein, 1973) Reference 紋理分析於瑕疵檢測的應用 The Application of Texture Analysis on Defect Detection P.17 DC & CV Lab. CSIE NTU

texture entropy Reference 紋理分析於瑕疵檢測的應用 The Application of Texture Analysis on Defect Detection P.19 DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) texture contrast Reference 紋理分析於瑕疵檢測的應用 The Application of Texture Analysis on Defect Detection P.16 DC & CV Lab. CSIE NTU

3.2 Region Properties (cont’) texture homogeneity where k is some small constant DC & CV Lab. CSIE NTU

texture correlation where DC & CV Lab. CSIE NTU

3.2.1 Extremal Points eight distinct extremal pixels: topmost left, topmost right, rightmost top, rightmost bottom, bottommost right, bottommost left, leftmost bottom, leftmost top, DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) different extremal points may be coincident DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) association of the name of the eight extremal points with their coordinates DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) directly define the coordinates of the extremal points: DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) association of the name of an external coordinate with its definition DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) extremal points occur in opposite pairs: topmost left bottommost right, topmost right bottommost left, rightmost top leftmost bottom, rightmost bottom leftmost top each opposite extremal point pair: defines an axis axis properties: length, orientation DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) the length covered by two pixels horizontally adjacent 1: distance between pixel centers 2: from left edge of left pixel to right edge of right pixel DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) distance calculation: add a small increment to the Euclidean distance DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) length going from left edge of left pixel to right edge of right pixel 𝑥∗ sin 𝜃=1 𝑥= 1 sin 𝜃 x θ DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) orientation taken counterclockwise w.r.t. column (horizontal) axis DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) orientation for the axes axes paired: with and with DC & CV Lab. CSIE NTU

Goal: α = ? tan α=− 𝑟 0 − 𝑟 1 𝑐 0 − 𝑐 1 ⁡tanθ= 𝑐 0 − 𝑐 1 𝑟 0 − 𝑟 1 c tanθ=tan 90+α = −cot α cot α =− 𝑐 0 − 𝑐 1 𝑟 0 − 𝑟 1 tan α=− 𝑟 0 − 𝑟 1 𝑐 0 − 𝑐 1 α = tan −1 ( − 𝑟 0 − 𝑟 1 𝑐 0 − 𝑐 1 ) c ( 𝑟 1 , 𝑐 1 ) α 𝜃 r ( 𝑟 0 , 𝑐 0 ) DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) calculation of the axis length and orientation of a linelike shape DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) distance between ith and jth extremal point average value of = 1.12, largest error 0.294 = - 1.12 DC & CV Lab. CSIE NTU

calculations for length of sides base and altitude for a triangle DC & CV Lab. CSIE NTU

calculation for the orientation of an example rectangle DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) axes and their mates that arise from octagonal-shaped regions DC & CV Lab. CSIE NTU

3.2.1 Extremal Points (cont’) DC & CV Lab. CSIE NTU

3.2.2 Spatial Moments Second-order row moment Second-order mixed moment Second-order column moment DC & CV Lab. CSIE NTU

If a region R is an ellipse whose center is the origin A relationship given by DC & CV Lab. CSIE NTU

3.2.3 Mixed Spatial Gray Level Moments (cont’) region properties: position, shape, gray level properties Second-order mixed gray level spatial moments DC & CV Lab. CSIE NTU

3.2.3 Mixed Spatial Gray Level Moments The mixed gray level spatial moments can be used to determine the least-squares gray level intensity planes to the observed gray level spatial pattern of the region R DC & CV Lab. CSIE NTU

3.2.3 Mixed Spatial Gray Level Moments (cont’) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 01 02 03 04 05 06 07 08 09 10 11 12 13 connected components labeling of the image in Fig 2.2 DC & CV Lab. CSIE NTU

3.2.3 Mixed Spatial Gray Level Moments (cont’) all the properties measured from each of the regions DC & CV Lab. CSIE NTU

3.2.3 Mixed Spatial Gray Level Moments (cont’) DC & CV Lab. CSIE NTU

3.3 Signature Properties vertical projection horizontal projection diagonal projection from lower left to upper right diagonal projection from upper left to lower right DC & CV Lab. CSIE NTU

3.3 Signature Properties DC & CV Lab. CSIE NTU

3.3 Signature Properties (cont’) Compute properties from projections Area, centroid of the region, second moments area DC & CV Lab. CSIE NTU

3.3 Signature Properties (cont’) rmin: top row of bounding rectangle rmax; bottom row of bounding rectangle cmin: leftmost column of bounding rectangle cmax: rightmost column of bounding rectangle DC & CV Lab. CSIE NTU

3.3 Signature Properties (cont’) row centroid column centroid diagonal centroid another diagonal centroid DC & CV Lab. CSIE NTU

3.3 Signature Properties (cont’) second row moment from horizontal projection second column moment from vertical projection second diagonal moment DC & CV Lab. CSIE NTU

3.3 Signature Properties DC & CV Lab. CSIE NTU

3.3 Signature Properties (cont’) second diagonal moment related to second mixed moment can be obtained from projection DC & CV Lab. CSIE NTU

3.3 Signature Properties (cont’) second mixed moment can be obtained from projection mixed moment obtained directly from and DC & CV Lab. CSIE NTU

3.3.1 Signature Analysis to Determine the Center and Orientation of a Rectangle signature analysis: important because of easy, fast implementation surface mount device (SMD) inspection: position and orientation of parts DC & CV Lab. CSIE NTU

3.3.1 Signature Analysis to Determine the Center and Orientation of a Rectangle (cont’) determine center of rectangle by corner location side lengths w, h orientation angle Clockwise rotation DC & CV Lab. CSIE NTU

geometry for determining the translation of the center of a rectangle -w/2 DC & CV Lab. CSIE NTU

partition rectangle into six regions formed by two vertical lines a known distance g apart and one horizontal line DC & CV Lab. CSIE NTU

3.3.1 Signature Analysis to Determine the Center and Orientation of a Rectangle (cont’) DC & CV Lab. CSIE NTU

DC & CV Lab. CSIE NTU

3.3.1 Signature Analysis to Determine the Center and Orientation of a Rectangle (cont’) where rotation angle DC & CV Lab. CSIE NTU

3.3.2 Using Signature to Determine the Center of a Circle (cont’) circle projected onto the four quadrants of the projection index image DC & CV Lab. CSIE NTU

DC & CV Lab. CSIE NTU

DC & CV Lab. CSIE NTU

3.3.2 Using Signature to Determine the Center of a Circle (cont’) each quadrant area from histogram of the masked projection positive if A + B > C + D negative otherwise where positive if B + D > A + C, negative otherwise DC & CV Lab. CSIE NTU

3.4 Summary region properties from connected components or signature analysis DC & CV Lab. CSIE NTU

Histogram Equalization (Homework) a method in image processing of contrast adjustment using the image's histogram pixel transformation r, s: original, new intensity, T: transformation T( r ) single-valued, monotonically increasing for A single-valued function is function that, for each point in the domain, has a unique value in the range. It is therefore one-to-one or many-to-one. DC & CV Lab. CSIE NTU

DC & CV Lab. CSIE NTU

Histogram Equalization (Homework) histogram equalization histogram linearization number of pixels with intensity j n: total number of pixels for every pixel if then DC & CV Lab. CSIE NTU

Histogram Equalization (Homework) Project due Oct. 9 Write a program to do histogram equalization DC & CV Lab. CSIE NTU

End DC & CV Lab. CSIE NTU