Yerevan State University

Slides:



Advertisements
Similar presentations
MAGNETARS AS COOLING NEUTRON STARS WITH MAGNETARS AS COOLING NEUTRON STARS WITH INTERNAL HEATING INTERNAL HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin,
Advertisements

Envelopes and thermal radiation of neutron stars with strong magnetic fields Alexander Y. Potekhin 1 in collaboration with D.G.Yakovlev, 1 A.D.Kaminker,
Nuclear “Pasta” in Compact Stars Hidetaka Sonoda University of Tokyo Theoretical Astrophysics Group Collaborators (G. Watanabe, K. Sato, K. Yasuoka, T.
Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia.
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Ilona Bednarek Ustroń, 2009 Hyperon Star Model.
Compact neutron stars Theory & Observations Hovik Grigorian Yerevan State University Summer School Dubna – 2012.
THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Catania, October 2012,
Internal structure of Neutron Stars. Artistic view.
COOLING OF YOUNG NEUTRON STARS AND THE SUPERNOVA 1987A D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Ladek Zdroj, February 2008,
Spin polarization phenomena in dense nuclear matter Alexander Isayev Kharkov Institute of Physics and Technology Ukraine.
Recent surprises from observations of Compact Stars Thanks to ‘cool’ coauthors: Hovik Grigorian, Fridolin Weber, Dima Voskresensky David Blaschke (Wroclaw.
Cooling of Compact Stars with Color Superconducting Quark Matter Tsuneo Noda (Kurume Institute of Technology) Collaboration with N. Yasutake (Chiba Institute.
Thomas Klähn D. Blaschke R. Łastowiecki F. Sandin Thomas Klähn – Three Days on Quarkyonic Island.
Cooling of Hybrid Neutron Stars Hovik Grigorian Yerevan State University Dubna, JINR Ladek Zdroj2008.
Xia Zhou & Xiao-ping Zheng The deconfinement phase transition in the interior of neutron stars Huazhong Normal University May 21, 2009 CSQCD Ⅱ.
Close-by young isolated NSs: A new test for cooling curves Sergei Popov (Sternberg Astronomical Institute) Co-authors: H.Grigorian, R. Turolla, D. Blaschke.
New Test for Cooling Curves Population Synthesis of Close-by Neutron Stars S.B. Popov 1, H. Grigorian 2, R. Turolla 3, D. Blaschke 4 1 Sternberg Astronomical.
Close-by young isolated NSs: A new test for cooling curves Sergei Popov (Sternberg Astronomical Institute) Co-authors: H.Grigorian, R. Turolla, D. Blaschke.
Thermal Evolution of Rotating neutron Stars and Signal of Quark Deconfinement Henan University, Kaifeng, China Miao Kang.
Evolution with decaying magnetic field. 2 Magnetic field decay Magnetic fields of NSs are expected to decay due to decay of currents which support them.
Thermal evolution of neutron stars. Evolution of neutron stars. I.: rotation + magnetic field Ejector → Propeller → Accretor → Georotator See the book.
Close-by young isolated neutron stars (and black holes) Sergey Popov (Sternberg Astronomical Institute)
Hovik Grigorian Dubna, JINR Yerevan 2008 International Symposium The Modern Physics of Compact Stars.
1I Compstar meeting, Wroclaw 2008 Prospects of inferring dense matter properties from NS cooling: the magnetar masquerade the magnetar masquerade José.
Ferromagnetic properties of quark matter a microscopic origin of magnetic field in compact stars T. Tatsumi Department of Physics, Kyoto University I.Introduction.
Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia.
Recent surprises from observations of Compact Stars Thanks to ‘cool’ coauthors: Hovik Grigorian, Fridolin Weber, Dima Voskresensky David Blaschke (Wroclaw.
1 On the importance of nucleation for the formation of quark cores inside compact stars Bruno Werneck Mintz* Eduardo Souza Fraga Universidade Federal do.
Close-by young isolated NSs: A new test for cooling curves Sergei Popov (Sternberg Astronomical Institute) Co-authors: H.Grigorian, R. Turolla, D. Blaschke.
Neutron stars swollen under strong magnetic fields Chung-Yeol Ryu Soongsil University, Seoul, Korea Vela pulsar.
Cooling of CasA With&without Quark Matter CSQCD-IV- Prepow my ‘cool’ co-authors: D. Blaschke, D. Voskresensky Hovik Grigorian : Yerevan State University,
Neutrino Processes in Neutron Stars Evgeni E. Kolomeitsev (Matej Bel University, Banska Bystrica, Slovakia)
THERMAL EVOLUION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Catania, October 2012,
COOLING OF NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Ladek Zdroj, February 2008, 1. Formulation of the Cooling.
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
1 11/20/ /10/2014 Jinniu Hu Stellar neutrino emission at finite temperature in relativistic mean field theory Jinniu Hu School of Physics, Nankai.
COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,
COOLING NEUTRON STARS: THEORY AND OBSERVATIONS D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Hirschegg – January – 2009 Introduction.
Exploring interior of neutron star through neutron star cooling I.Introduction II.Thermal evolution of neutron stars -Basic concepts of cooling curve of.
1 X-ray enhancement and long- term evolution of Swift J arXiv: Authors: O. Benli, S. Caliskan, U. Ertan et al. Reporter: Fu, Lei.
Thermal evolution of neutron stars. Evolution of neutron stars. I.: rotation + magnetic field Ejector → Propeller → Accretor → Georotator See the book.
COOLING OF NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Ladek Zdroj, February 2008, 1. Formulation of the Cooling.
The Cooling of Neutron Stars Dany Page Instituto de Astronomía, UNAM, Mexico KIAS - APCTP International Symposium in Astro-Hadron Physic Seoul, Korea,
Neutron star masses: dwarfs, giants and neighbors Sergei Popov (SAI MSU) Collaborators: M. Prokhorov H. Grigorian D. Blaschke.
带强磁场奇异星的 中微子发射率 刘学文 指导老师:郑小平 华中师范大学物理科学与技术学院. Pulsar In 1967 at Cambridge University, Jocelyn Bell observed a strange radio pulse that had a regular period.
Some theoretical aspects of Magnetars Monika Sinha Indian Institute of Technology Jodhpur.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Nucleosynthesis in decompressed Neutron stars crust matter Sarmistha Banik Collaborators: Smruti Smita Lenka & B. Hareesh Gautham BITS-PILANI, Hyderabad.
Ladek Zdroj, February 2008, Neutrino emission in nonsuperfluid matter The effects of superfluidity COOLING OF NEUTRON STARS D.G. Yakovlev Ioffe Physical.
To test AXP/SGR models with eXTP NSs & magnetarshttp:// R. X. Xu Renxin Xu ( 徐仁新 ) School of Physics, Peking University (
Equation of state of neutron stars: Consistency with observation
The nuclear EoS at high density
Active lines of development in microscopic studies of
Essential of Ultra Strong Magnetic field and Activity For Magnetars
Thermal evolution of neutron stars
Neutrino emissivity of the dense superfluid nuclear matter
Bayesian analysis for hybrid star
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
Astrophysical Constraints on the Nuclear Equation of State
Neutrino Processes in Neutron Stars
Papers to read Or astro-ph/
Effects of rotochemical heating on the thermal evolution of superfluid neutron stars HuaZhong Normal University Chun-Mei Pi & Xiao-Ping Zheng.
Internal structure of Neutron Stars
Evolution with decaying magnetic field
Cooling of Neutron Stars
Bayesian analysis for hybrid star
Thermal evolution of neutron stars
Equation of State for Hadron-Quark Mixed Phase and Stellar Collapse
Thermal evolution of neutron stars
Presentation transcript:

Yerevan State University Cooling of Compact High Mass Twin Stars Hovik Grigorian: JINR – Dubna Yerevan State University ICNFP -VI - 2017 Crete - 29 August my co-authors: D.Blaschke, D.Voskresensky, N-U. Bastian 1 1

Cooling Of Neutron Stars Introduction to Cooling Simulation Cooling regulators Time Evolution of Temperature Super conductivity & in-medium effects Results for NS cooling H. Grigorian, D. N. Voskresensky and D. Blaschke Eur. Phys. J. A 52: 67 (2016). 2

Phase Diagramm & Cooling Simulation Description of the stellar matter - local properties (EoS of super-dense matter) Modeling of the gravitationally self bound compact star - including the density profiles Extrapolations of the energy loss mechanisms to higher densities and temperatures Consistency of the approaches Comparison with observational data

Phase Diagramm & Cooling Simulation Description of the stellar matter - local properties (EoS of super-dense matter) Modeling of the gravitationally self bound compact star - including the density profiles Extrapolations of the energy loss mechanisms to higher densities and temperatures Consistency of the approaches Comparison with observational data

Structure Of Hybrid Star 1

Modification of HHJ (HDD) parameterization of EoS Introduction of the excluded volume

HDD, DD2 & DDvex-NJL EoS model Stability of stars HDD, DD2 & DDvex-NJL EoS model

High Mass Twin CS

Different Configurations with the same NS mass

Surface Temperature & Age Data Fast Coolers 11

Cooling Mechanism 12

Cooling Evolution The energy flux per unit time l(r) through a spherical slice at distance r from the center is: The equations for energy balance and thermal energy transport are: where n = n(r) is the baryon number density, NB = NB(r) is the total baryon number in the sphere with radius r F.Weber: Pulsars as Astro. Labs ... (1999); D. Blaschke Grigorian, Voskresensky, A& A 368 (2001)561. 13

Neutrino emissivities in hadronic matter: Direct Urca (DU) the most efficient processes Modified Urca (MU) and Bremsstrahlung Suppression due to the pairing Enhanced cooling due to the pairing

DU constraint 15

The Mass constraint and DU - onsets

Medium Effects In Cooling Of Neutron Stars Based on Fermi liquid theory ( Landau (1956), Migdal (1967), Migdal et al. (1990)) MMU – insted of MU Main regulator in Minimal Cooling

Medium Effects In Cooling Of Neutron Stars

SC Pairing Gaps 2SC phase: 1 color (blue) is unpaired (mixed superconductivity) Ansatz 2SC + X phase: Pairing gaps for hadronic phase (AV18 - Takatsuka et al. (2004)) Popov, Grigorian, Blaschke, PRC 74 (2006) 19

SC Pairing Gaps 20

Anomalies Because Of PBF Proccess AV18 gaps, pi-condensate, without suppression of 3P2 neutron pairing - Enhanced PBF process The gaps from Yakovlev at al. (2003) Grigorian, Voskresensky Astron.Astrophys. 444 (2005) 21

Contributions To Luminosities

The Influence Of A Change Of The Heat Conductivity On The Scenario Blaschke, Grigorian, Voskresensky, A& A 424, 979 (2004)

Neutrino emissivities in quark matter: Quark direct Urca (QDU) the most efficient processes Compression n/n0 ≃ 2 , strong coupling αs ≈ 1 Quark Modified Urca (QMU) and Quark Bremsstrahlung Suppression due to the pairing Enhanced cooling due to the pairing

Crust Model Time dependence of the light element contents in the crust Blaschke, Grigorian, Voskresensky, A& A 368 (2001)561. Page,Lattimer,Prakash & Steiner, Astrophys.J. 155,623 (2004) Yakovlev, Levenfish, Potekhin, Gnedin & Chabrier , Astron. Astrophys , 417, 169 (2004) 25

Temperature In The Hybrid Star Interior Blaschke, Grigorian, Voskresensky, A& A 368 (2001) 561 26

Temperature In The Hybrid Star Interior Blaschke, Grigorian, Voskresensky, A& A 368 (2001) 561 27

Cas A as an Hadronic Star

Cas A As An Hybrid Star

Possible internal structure of CasA

HDD – AV18 , Yak. ME nc = 3 n0

DD2 – EEHOr ME-nc=1.5,2.0,2.5n0

Cooling of Twin CS

Conclusions All known cooling data including the Cas A rapid cooling consistently described by the ``nuclear medium cooling" scenario Influence of stiffness on EoS and cooling can be balanced by the choice of corresponding gap model. In case of existence of III CSF high- mass twin stars could show different cooling behavior depending on core superconductivity

Thank YOU!!!!!

Cooling of Twin CS

DD2- ME-nc = 3 n0 BCLL, EEHOr

DD2 vex-p40, AO ME-nc = 2.0,2.5 n0

DD2 vex p40, BCLL ME-nc = 1.5,2.0 n0

DD2 – BCLL ME-nc =1.5,2.0,2.5n0

Data of NS on Magnetic Field Magnetars AXPs, SGRs B = 10^14 -10^15 G Radio-quiet NSs B = 10^13 G Radio-pulsar NSs B = 10^12 G Radio-pulsar NSs B = 10^12 G H - spectrum

Neutron Star in Cassiopeia A 16.08.1680 John Flamsteed, 6m star 3 Cas 1947 re-discovery in radio 1950 optical counterpart T ∼ 30 MK V exp ∼ 4000 − 6000 km/s distance 11.000 ly = 3.4 kpc picture: spitzer space telescope D.Blaschke, H. Grigorian, D. Voskresensky, F. Weber, Phys. Rev. C 85 (2012) 022802 e-Print: arXiv:1108.4125 [nucl-th]

DU Problem & Constraint 48

Influence Of SC On Luminosity Critical temperature, Tc, for the proton 1S0 and neutron 3P2 gaps, used in PAGE, LATTIMER, PRAKASH, & STEINER Astrophys.J.707:1131 (2009)

Tc ‘Measurement’ From Cas A Assumed to be a star with mass = 1.4 M⊙ from the APR EoS Rapidly cools at ages ∼ 30-100 yrs due to the thermal relaxation of the crust Mass dependence Page, Lattimer, Prakash, & Steiner Phys.Rev.Lett.106:081101,2011

Equations for Cooling Evolution 51

Finite difference scheme Z_i next step Time direction Z_i+1 Z_i initial Z_i-1

Boundary conditions L_conductivity L_photons L L = 0 Outer Crust of NS r = R L_photons L = 0 Center of NS r = 0 L