H.L. Tanaka and K. Kondo University of Tsukuba

Slides:



Advertisements
Similar presentations
Filtering for High Dimension Spatial Systems Jonathan Briggs Department of Statistics University of Auckland.
Advertisements

1B.17 ASSESSING THE IMPACT OF OBSERVATIONS AND MODEL ERRORS IN THE ENSEMBLE DATA ASSIMILATION FRAMEWORK D. Zupanski 1, A. Y. Hou 2, S. Zhang 2, M. Zupanski.
Data Assimilation Andrew Collard. Overview Introduction to Atmospheric Data Assimilation Control Variables Observations Background Error Covariance Summary.
Extended Kalman Filter (EKF) And some other useful Kalman stuff!
Effects of model error on ensemble forecast using the EnKF Hiroshi Koyama 1 and Masahiro Watanabe 2 1 : Center for Climate System Research, University.
1 アンサンブルカルマンフィルターによ る大気海洋結合モデルへのデータ同化 On-line estimation of observation error covariance for ensemble-based filters Genta Ueno The Institute of Statistical.
Operational Forecasting and Sensitivity-Based Data Assimilation Tools Dr. Brian Ancell Texas Tech Atmospheric Sciences.
Ibrahim Hoteit KAUST, CSIM, May 2010 Should we be using Data Assimilation to Combine Seismic Imaging and Reservoir Modeling? Earth Sciences and Engineering.
A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric.
Initializing a Hurricane Vortex with an EnKF Yongsheng Chen Chris Snyder MMM / NCAR.
數位控制(九).
Click to edit Master title style Click to edit Master text styles Second level Third level Fourth level Fifth level 1 Click to edit Master title style.
Advanced data assimilation methods- EKF and EnKF Hong Li and Eugenia Kalnay University of Maryland July 2006.
Ensemble Kalman Filter Methods
Estimation and the Kalman Filter David Johnson. The Mean of a Discrete Distribution “I have more legs than average”
Current Status of the Development of the Local Ensemble Transform Kalman Filter at UMD Istvan Szunyogh representing the UMD “Chaos-Weather” Group Ensemble.
A comparison of hybrid ensemble transform Kalman filter(ETKF)-3DVAR and ensemble square root filter (EnSRF) analysis schemes Xuguang Wang NOAA/ESRL/PSD,
G. Hendeby Performance Issues in Non-Gaussian Filtering Problems NSSPW ‘06 Corpus Christi College, Cambridge Performance Issues in Non-Gaussian Filtering.
G. Hendeby Recursive Triangulation Using Bearings-Only Sensors TARGET ‘06 Austin Court, Birmingham Recursive Triangulation Using Bearings-Only Sensors.
ROBOT MAPPING AND EKF SLAM
WWOSC 2014 Assimilation of 3D radar reflectivity with an Ensemble Kalman Filter on a convection-permitting scale WWOSC 2014 Theresa Bick 1,2,* Silke Trömel.
The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model Michael Würsch, George C. Craig.
EnKF Overview and Theory
Computational Issues: An EnKF Perspective Jeff Whitaker NOAA Earth System Research Lab ENIAC 1948“Roadrunner” 2008.
CSDA Conference, Limassol, 2005 University of Medicine and Pharmacy “Gr. T. Popa” Iasi Department of Mathematics and Informatics Gabriel Dimitriu University.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss High-resolution data assimilation in COSMO: Status and.
Kalman Filter (Thu) Joon Shik Kim Computational Models of Intelligence.
1 GSI/ETKF Regional Hybrid Data Assimilation with MMM Hybrid Testbed Arthur P. Mizzi NCAR/MMM 2011 GSI Workshop June 29 – July 1, 2011.
Applications of optimal control and EnKF to Flow Simulation and Modeling Florida State University, February, 2005, Tallahassee, Florida The Maximum.
The “ ” Paige in Kalman Filtering K. E. Schubert.
Research Vignette: The TransCom3 Time-Dependent Global CO 2 Flux Inversion … and More David F. Baker NCAR 12 July 2007 David F. Baker NCAR 12 July 2007.
Data assimilation and forecasting the weather (!) Eugenia Kalnay and many friends University of Maryland.
Multivariate Data Assimilation of Carbon Cycle Using Local Ensemble Transform Kalman Filter 1 Ji-Sun Kang, 1 Eugenia Kalnay, 2 Junjie Liu, 2 Inez Fung,
Adaptive Hybrid EnKF-OI for State- Parameters Estimation in Contaminant Transport Models Mohamad E. Gharamti, Johan Valstar, Ibrahim Hoteit European Geoscience.
Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.
Unscented Kalman Filter 1. 2 Linearization via Unscented Transform EKF UKF.
Local Predictability of the Performance of an Ensemble Forecast System Liz Satterfield and Istvan Szunyogh Texas A&M University, College Station, TX Third.
An Introduction To The Kalman Filter By, Santhosh Kumar.
Parameter estimation of forest carbon dynamics using Kalman Filter methods –Preliminary results Chao Gao, 1 Han Wang, 2 S Lakshmivarahan, 3 Ensheng Weng,
By: Aaron Dyreson Supervising Professor: Dr. Ioannis Schizas
Nonlinear State Estimation
Determining Key Model Parameters of Rapidly Intensifying Hurricane Guillermo(1997) Using the Ensemble Kalman Filter Chen Deng-Shun 16 Apr, 2013, NCU Godinez,
Data assimilation applied to simple hydrodynamic cases in MATLAB
Cameron Rowe.  Introduction  Purpose  Implementation  Simple Example Problem  Extended Kalman Filters  Conclusion  Real World Examples.
Data assimilation for weather forecasting G.W. Inverarity 06/05/15.
2007/3/19 MRI, Tsukuba Recent developments of the local ensemble transform Kalman filter (LETKF) at JMA Takemasa Miyoshi (NPD/JMA) Collaborators: Shozo.
A Random Subgrouping Scheme for Ensemble Kalman Filters Yun Liu Dept. of Atmospheric and Oceanic Science, University of Maryland Atmospheric and oceanic.
The Unscented Kalman Filter for Nonlinear Estimation Young Ki Baik.
The application of ensemble Kalman filter in adaptive observation and information content estimation studies Junjie Liu and Eugenia Kalnay July 13th, 2007.
LOCAL ENSEMBLE KALMAN FILTER (LETKF) ANALYSIS OF LOOP CURRENT & EDDY IN THE GULF OF MEXICO Fanghua Xu 1, Leo Oey 1, Yasumasa Miyazawa 2, Peter Hamilton.
Assimilation of radar observations in mesoscale models using approximate background error covariance matrices (2006 Madison Flood Case) 1.
École Doctorale des Sciences de l'Environnement d’Île-de-France Année Universitaire Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
École Doctorale des Sciences de l'Environnement d’ Î le-de-France Année Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
The Ensemble Kalman filter
Korea Institute of Atmospheric Prediction Systems (KIAPS) ( 재 ) 한국형수치예보모델개발사업단 LETKF 앙상블 자료동화 시스템 테스트베드 구축 및 활용방안 Implementation and application of LETKF.
Hybrid Data Assimilation
Multiscale Ensemble Filtering in Reservoir Engineering Applications
Data Assimilation Theory CTCD Data Assimilation Workshop Nov 2005
Information content in ensemble data assimilation
PSG College of Technology
Unscented Kalman Filter
Simultaneous Localization and Mapping
Probabilistic Robotics
background error covariance matrices Rescaled EnKF Optimization
Ensemble variance loss in transport models:
Kalman Filter فيلتر كالمن در سال 1960 توسط R.E.Kalman در مقاله اي تحت عنوان زير معرفي شد. “A new approach to liner filtering & prediction problem” Transactions.
2. University of Northern British Columbia, Prince George, Canada
6.891 Computer Experiments for Particle Filtering
A Data Assimilation Scheme for Driven Systems
Sarah Dance DARC/University of Reading
Presentation transcript:

H.L. Tanaka and K. Kondo University of Tsukuba Comparative study on the error covariance matrices for KF and EnKF using the barotropic S-model H.L. Tanaka and K. Kondo University of Tsukuba

Introduction KF (Kalman Filter) (Kalman 1960) implementation needs to calculate inverse of a matrix with the dimension of model variables. We can’t directly implement KF in recent numerical models. EnKF (Ensemble Kalman Filter) approximates KF(Evensen 1994).

Introduction EKF vs EnKF Dimension of the barotropic S-model is low (Tanaka 2003). We can directly implement EKF (Extended Kalman Filter) in the barotropic S-model. EKF vs EnKF

Methods Barotropic S-Model EnKF Local Ensemble Transform Kalman Filter: LETKF (Hunt 2005) Ensemble member: 51

Kalman Filter Ensemble Kalman Filter

Methods EKF and EnKF are implemented in perfect model experiments with the barotropic S-model. Observation data = Ture data + noise EKF and EnKF assimilated observation data to forecast data in every 6 hours.

Results

EKF EnKF Observational Error Initial 1990/01/01/00z

EKF vs EnKF Pf norm of EnKF Pa norm of EnKF Pf norm of EKF Pa norm of EKF 25 1 3.5

1day(24hr) Pf of EKF Pa of EKF 260

1day(24hr) Pf of EnKF Pa of EnKF Pf of EKF Pa of EKF

3.5day(84hr) Pf of EKF Pa of EKF 110

3.5day(84hr) Pf of EnKF Pa of EnKF Pf of EKF Pa of EKF

25day(600hr) Pf of EKF Pa of EKF 50

25day(600hr) Pf of EnKF Pa of EnKF Pf of EKF Pa of EKF

1day(24hr)

1day(24hr)

3.5day(84hr)

3.5day(84hr)

25day(600hr)

25day(600hr)

Conclusions Performance of EnKF is as good as that of EKF. The assimilation cycle leads to degenerate dimensions of the error covariance matrices. Eigenvalue of the error covariance matrices of EKF is about 50% of that of EnKF. Eigenvector of the error covariance matrices of EnKF is similar to that of EKF.