8-10 June Institut Henri Poincaré, Paris, France

Slides:



Advertisements
Similar presentations
Erdem Oz* USC E-164X,E167 Collaboration Plasma Dark Current in Self-Ionized Plasma Wake Field Accelerators
Advertisements

Design and Experimental Considerations for Multi-stage Laser Driven Particle Accelerator at 1μm Driving Wavelength Y.Y. Lin( 林元堯), A.C. Chiang (蔣安忠), Y.C.
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Physics of a 10 GeV laser-plasma accelerator stage Eric Esarey HBEB Workshop, Nov , C. Schroeder, C. Geddes, E. Cormier-Michel,
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
KEK : Novel Accelerator TYL Workshop M. Yoshida, M. Nozaki, K. Koyama, High energy research organization (KEK) -Collaboration -IZEST (CEA) :
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
Plasma wakefields in the quasi- nonlinear regime J.B. Rosenzweig a, G. Andonian a, S. Barber a, M. Ferrario b, P. Muggli c, B. O’Shea a, Y. Sakai a, A.
Particle-Driven Plasma Wakefield Acceleration James Holloway University College London, London, UK PhD Supervisors: Professor Matthew wing University College.
Lecture 3: Laser Wake Field Acceleration (LWFA)
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
Eric Esarey W. Leemans, C. Geddes, C. Schroeder, S. Toth,
The AWAKE Project at CERN and its Connections to CTF3 Edda Gschwendtner, CERN.
New Electron Beam Test Facility EBTF at Daresbury Laboratory B.L. Militsyn on behalf of the ASTeC team Accelerator Science and Technology Centre Science.
FACET and beam-driven e-/e+ collider concepts Chengkun Huang (UCLA/LANL) and members of FACET collaboration SciDAC COMPASS all hands meeting 2009 LA-UR.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
Free Electron Lasers (I)
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
SIMULATIONS FOR THE ELUCIDATION OF ELECTRON BEAM PROPERTIES IN LASER-WAKEFIELD ACCELERATION EXPERIMENTS VIA BETATRON AND SYNCHROTRON-LIKE RADIATION P.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
Max Cornacchia, SLAC LCLS Project Overview BESAC, Feb , 2001 LCLS Project Overview What is the LCLS ? Transition from 3 rd generation light sources.
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
1 1 Office of Science C. Schroeder, E. Esarey, C. Benedetti, C. Geddes, W. Leemans Lawrence Berkeley National Laboratory FACET-II Science Opportunities.
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
People Xavier Stragier Marnix van der Wiel (AccTec) Willem op ‘t Root Jom Luiten Walter van Dijk Seth Brussaard Walter Knulst (TUDelft) Fred Kiewiet Eddy.
Erik Adli CLIC Project Meeting, CERN, CH 1 Erik Adli Department of Physics, University of Oslo, Norway Input from: Steffen Doebert, Wilfried Farabolini,
The Next Generation Light Source Test Facility at Daresbury Jim Clarke ASTeC, STFC Daresbury Laboratory Ultra Bright Electron Sources Workshop, Daresbury,
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
Summary WG5 R&D for Innovative Accelerators Greg LeBlanc.
Ionization Injection E. Öz Max Planck Institute Für Physik.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
V.N. Litvinenko (SBU) C. Joshi, W. Mori (UCLA)
S.M. Polozov & Ko., NRNU MEPhI
SPARCLAB: PW-class Ti:Sa laser+SPARC
V.N. Litvinenko, H. Li, N. Vafaei Stony Brook University
Multi-bunch Operation for LCLS, LCLS_II, LCLS_2025
Proton-driven plasma wakefield acceleration in hollow plasma
Positron production rate vs incident electron beam energy for a tungsten target
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
The 2nd European Advanced Accelerator Concepts Workshop
Status of the MAX IV Short Pulse Facility
Sara Thorin, MAX IV Laboratory
SUPA, Department of Physics, University of Strathclyde,
ULTRA-HIGH BRIGHTNESS ELECTRON BEAMS BY PLASMA BASED INJECTORS FOR ALL
Laboratoire d’Optique Appliquée
LWFA using guided propagation of laser pulses in capillaries
WP11: electron and proton beam testing
EuPRAXIA working package report
Wakefield Accelerator
Control of laser wakefield amplitude in capillary tubes
Beyond the RF photogun Jom Luiten Seth Brussaard
All-Optical Injection
MIT Compact X-ray Source
Review of Application to SASE-FELs
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
Using a Bessel Light Beam as an Ultra-short Period Helical Undulator
Injector: What is needed to improve the beam quality?
Advanced Research Electron Accelerator Laboratory
Electron sources for FCC-ee
Modified Beam Parameter Range
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Beam loading at a nanocoulomb-class laser wakefield accelerator
Proposal for Smith-Purcell radiation experiment at SPARC_LAB
Electron Optics & Bunch Compression
Presentation transcript:

8-10 June 2005 -Institut Henri Poincaré, Paris, France Conceptual design of a laser wakefield experiment with external bunch injection in front of the laser pulse. Arsen Khachatryan, Fred van Goor, Mark Luttikhof, Arie Irman, Jeroen Verschuur, Bert Bastiaens, and Klaus Boller. University of Twente, Enschede, The Netherlands. International Workshop on High Energy Electron Acceleration Using Plasmas 2005 8-10 June 2005 -Institut Henri Poincaré, Paris, France

Dutch Laser Wakefield Accelerators Program University of Twente Laser Physics group University of Eindhoven Physics and Applications of Ion Beams and Accelerators group FOM-Institute for Plasma Physics “Rijnhuizen” Laser-Plasma XUV Source and XUV optics group High Energy Electron Acceleration Using Plasmas 2005

High Energy Electron Acceleration Using Plasmas 2005 Support and Topics Foundation for Fundamental Research on Matter (FOM) Project duration: 2002 - 2008 External injection schemes (TUE, UT) Photo injector (TUE, UT) Ti-Sapphire laser (UT) Plasma channel (FOM-Rijnhuizen) High Energy Electron Acceleration Using Plasmas 2005

LWFA The Injection Problem External Injection Internal Injection (wavebreaking) Injection in wakefield (behind laser) Injection in front of laser Self-modulated regime All-Optical injection Bubble regime High Energy Electron Acceleration Using Plasmas 2005

High Energy Electron Acceleration Using Plasmas 2005

High Energy Electron Acceleration Using Plasmas 2005 Bunch dynamics Laser: a0 = 1.0 gg = 30 Spot radius = 30.5 mm Pulse duration = 30 fs Plasma channel: np = 2x1018 cm-3 lp = 24 mm Length = 2.3 cm Injected bunch: FWHM duration = 300 fs FWHM width = 82 mm energy = 1.6 MeV Accelerated bunch: Emittance = 8 p-mm-mrad Length (rms) = 1 mm Radius (rms) = 1.3 mm energy = 453 MeV energy spread = 2.8% Collection efficiency = 44% High Energy Electron Acceleration Using Plasmas 2005

High Energy Electron Acceleration Using Plasmas 2005 Longitudinal field Normalized Ez kpr kp(z-ct) High Energy Electron Acceleration Using Plasmas 2005

High Energy Electron Acceleration Using Plasmas 2005 Transverse field Focusing field kpr kp(z-ct) High Energy Electron Acceleration Using Plasmas 2005

High Energy Electron Acceleration Using Plasmas 2005 Average Bunch Energy High Energy Electron Acceleration Using Plasmas 2005

High Energy Electron Acceleration Using Plasmas 2005 rms Bunch Radius High Energy Electron Acceleration Using Plasmas 2005

High Energy Electron Acceleration Using Plasmas 2005 rms Bunch Length High Energy Electron Acceleration Using Plasmas 2005

High Energy Electron Acceleration Using Plasmas 2005 rms energy spread High Energy Electron Acceleration Using Plasmas 2005

Normalized rms emittance High Energy Electron Acceleration Using Plasmas 2005

High Energy Electron Acceleration Using Plasmas 2005 Parameters for Proof-of-Principle Experiment with 1J, (30-50) fs Laser Pulse. Laser pulse: Wavelength: 0.8 m Peak intensity at focus: (16)1018 W/cm2 Normalized amplitude, a0: 0.71.7 z: 7.65-12.75 m r: 20-50 m Plasma channel: On-axis electron concentration, np(0): (0.72) 1018 cm-3 On-axis plasma wavelength, p: (2440) m Channel length: (25) cm Injected electron bunch: Energy mec20: (14) MeV Bunch duration: (200700) fs Bunch diameter: (100200) m Number of electrons: 108109 ((16160) pC) Accelerated electron bunch: Energy mec20: (0.24.5) GeV Bunch duration: (110) fs Bunch diameter: (210) m Number of electrons: up to 108 (16 pC)  beam loading limit High Energy Electron Acceleration Using Plasmas 2005

High Energy Electron Acceleration Using Plasmas 2005 The New Scheme + Plasma channel Parabolic radial density profile, np ~1017-1018 cm-3. Low-energy electron bunch: Energy (g0) – hundreds keVs to few MeVs Length (L0) – up to a few hundreds microns Trapping distance: Ltr ~2 g02L0 = Ultra-short relativistic electron bunch: Length – ~ 1 micron (few fs); Diameter – few microns; Energy – up to a few GeV’s; Number of electrons – ~108 (~10 pC, beam-loading limit) High-intensity laser pulse: Intensity >1018 W/cm2 + High Energy Electron Acceleration Using Plasmas 2005

High Energy Electron Acceleration Using Plasmas 2005 Experimental Set-Up e-bunch Parabolic mirror Linac Metal photo cathode Plasma channel 3rd harmonic converter Laser pulse High Energy Electron Acceleration Using Plasmas 2005

Advantages of the LWFA scheme No ultra-short electron bunch is needed before the acceleration in the laser wakefield; No femtosecond synchronization is required while injecting the bunch in the wakefield; No transverse size of a few micron and precise transverse positioning are needed for the injecting e-bunch; Effective longitudinal and transverse electron-bunch compression; Good quality of the accelerated bunch; Scaling to high energies (GeV’s) is possible. High Energy Electron Acceleration Using Plasmas 2005

High Energy Electron Acceleration Using Plasmas 2005 End High Energy Electron Acceleration Using Plasmas 2005