Independent & Dependent Events

Slides:



Advertisements
Similar presentations
Section 5.1 and 5.2 Probability
Advertisements

Probability Sample Space Diagrams.
1 1 PRESENTED BY E. G. GASCON Introduction to Probability Section 7.3, 7.4, 7.5.
1 Chapter 6: Probability— The Study of Randomness 6.1The Idea of Probability 6.2Probability Models 6.3General Probability Rules.
EXAMPLE 1 Standardized Test Practice SOLUTION Let events A and B be getting the winning ticket for the gift certificate and movie passes, respectively.
Dependent and Independent Events. If you have events that occur together or in a row, they are considered to be compound events (involve two or more separate.
Conditional Probability CCM2 Unit 6: Probability.
Section 5.2 The Addition Rule and Complements
What are the chances of that happening?. What is probability? The mathematical expression of the chances that a particular event or outcome will happen.
Sets, Combinatorics, Probability, and Number Theory Mathematical Structures for Computer Science Chapter 3 Copyright © 2006 W.H. Freeman & Co.MSCS SlidesProbability.
Sets, Combinatorics, Probability, and Number Theory Mathematical Structures for Computer Science Chapter 3 Copyright © 2006 W.H. Freeman & Co.MSCS SlidesProbability.
Probability of Independent and Dependent Events
Probability of Multiple Events.  Today’s standard: CCSS.MATH.CONTENT.7.PS.8.A Understand that, just as with simple events, the probability of a compound.
Copyright © Cengage Learning. All rights reserved. 4 Probability.
AP Statistics Chapter 6 Notes. Probability Terms Random: Individual outcomes are uncertain, but there is a predictable distribution of outcomes in the.
Special Topics. General Addition Rule Last time, we learned the Addition Rule for Mutually Exclusive events (Disjoint Events). This was: P(A or B) = P(A)
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 12.6 OR and AND Problems.
C OMPOUND PROBABILITY M408 Probability Unit. Example 1 – Pick a card from a deck. Replace the card in the deck, then pick again. What is the probability.
Section 5.3 Conditional Probability and Independence
Topic 4A: Independent and Dependent Events Using the Product Rule
Chapter 12 – Probability and Statistics 12.4 – Multiplying Probabilities.
CHAPTER 12: General Rules of Probability Lecture PowerPoint Slides The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner.
Copyright © 2010 Pearson Education, Inc. Chapter 6 Probability.
Algebra II 10.4: Find Probabilities of Disjoint and Overlapping Events HW: HW: p.710 (8 – 38 even) Chapter 10 Test: Thursday.
SECTION 11-3 Conditional Probability; Events Involving “And” Slide
Note to the Presenter Print the notes of the power point (File – Print – select print notes) to have as you present the slide show. There are detailed.
13.3 Conditional Probability and Intersections of Events Understand how to compute conditional probability. Calculate the probability of the intersection.
Probability What’s the chance of that happening? MM1D2 a, b, c.
Probability of Independent and Dependent Events CCM2 Unit 6: Probability.
Introduction to Probability (Dr. Monticino). Assignment Sheet  Read Chapters 13 and 14  Assignment #8 (Due Wednesday March 23 rd )  Chapter 13  Exercise.
Math 30-2 Probability & Odds. Acceptable Standards (50-79%)  The student can express odds for or odds against as a probability determine the probability.
Consecutive Trials (multiple events) Consecutive trials are when a situation occurs multiple times – I draw two, three, four or more cards. – I throw the.
9.2 Connecting Probability to Models and Counting Remember to Silence Your Cell Phone and Put It In Your Bag!
Chapter 10 – Data Analysis and Probability 10.8 – Probability of Independent and Dependent Events.
Conditional Probability and the Multiplication Rule NOTES Coach Bridges.
Copyright © 2011 Pearson Education, Inc. Probability: Living with the Odds.
Probabilities of Disjoint and Overlapping Events notes.
Section 6.2: Probability Models Ways to show a sample space of outcomes of multiple actions/tasks: (example: flipping a coin and rolling a 6 sided die)
I can find probabilities of compound events.. Compound Events  Involves two or more things happening at once.  Uses the words “and” & “or”
Copyright © 2015, 2011, 2008 Pearson Education, Inc. Chapter 7, Unit B, Slide 1 Probability: Living With The Odds 7.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
Unit 4 Probability Day 3: Independent and Dependent events.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 15 Probability Rules!
Chapter 15: Probability Rules! Ryan Vu and Erick Li Period 2.
Chapter 15 Probability Rules Robert Lauzon. Probability Single Events ●When you are trying to find the probability of a single outcome it can be found.
Conditional Probability 423/what-is-your-favorite-data-analysis-cartoon 1.
Section 5.1 and 5.2 Probability
Please copy your homework into your assignment book
Chapter 15 Probability Rules!.
Aim: What is the multiplication rule?
Warm-up How many digits do you need to simulate heads or tails (or even or odd)? 2) To simulate an integer % probability of passing or failing?
International Studies Charter School.
Consecutive Trials (multiple events)
12.4 Probability of Compound Events
LEARNING GOAL The student will understand how to calculate the probability of an event.
A ratio that measures the chance that an event will happen
Sec. 5-4: Multiplication Rule & Conditional P(x)
Multiplication Rule and Conditional Probability
Combining Probabilities
I can find probabilities of compound events.
Section 6.2 Probability Models
Mr. Reider AP Stat November 18, 2010
Please copy your homework into your assignment book
Probability Simple and Compound.
Section 12.6 OR and AND Problems
Mutually Exclusive Events
Probability Multiplication law for dependent events
Bell Ringer -2(3 + 6v) = -5v – – 12v = -5v –
Compound Events – Independent and Dependent
Sets, Combinatorics, Probability, and Number Theory
Presentation transcript:

Independent & Dependent Events

Review How can you tell whether events are Bell Ringer: Mixed review Review How can you tell whether events are mutually exclusive (disjoint)? When two or more events are mutually exclusive, how do you find the probability of one event or the other happening?

Review (cont’d) What is the Counting Principle? When and how it is used? How do you use a tree diagram?

Independent Events Independent events are two or more events whose outcomes do not affect one another They can happen at the same time, however Example: The BMS Booster Club is selling 150 raffle tickets for a gift card to the movies. Y Club is also selling 200 raffle tickets for free pizza. You buy 5 raffle tickets from both clubs. What is the probability that you win both prizes?

Independent Events Example These two raffle drawings are independent events because the outcome of the Booster Club drawing has no effect on the Chess Club drawing In order to calculate the probability of winning both drawings, we must first find the probability of winning each one separately

Independent Events Example (cont’d) Let “winning the BMS drawing” be Event A Let “winning the Y Club drawing” be Event B P(A) = P(B) = Now, we want to find the probability of winning both P(A and B)

Example (slide 3) P(A) = P(B) = To find P(A and B), we must multiply the probabilities together P(A and B) =

Example (slide 4) Hence, the probability of winning both the Booster Club raffle and the Y Club raffle is about 1 in 1,200, or 0.083%.

Dependent Events Dependent events are two or more events where the outcome of one does affect the outcome of the other Example: From a standard deck of cards, what is the probability of drawing a queen, then without replacement, drawing another queen?

Dependent Events Example Without replacement is a very important phrase This means that when the first card is drawn, it is not put back in the deck before drawing the second “Without replacement” means that the events are dependent Events are dependent when the sample size changes from one event to the next

Dependent Events Example (cont’d) In this situation, the sample size has changed from 52 cards to 51, since the first card was not put back in the deck Let’s say that the probability of drawing the first queen is Event A, and the probability of drawing the second queen is Event B

Dependent Events Example (slide 3) Just as with independent events, we also need to first find P(A) and P(B|A) separately before finding P(A and B) P(B|A) means “probability of B after A” We must take A into consideration when calculating P(B)

Dependent Events Example (slide 4)

Closure Distinguish between independent and dependent events BR tomorrow: coin flipping w/ multiple coins Distinguish between independent and dependent events Explain how to find P(A and B) for independent events Explain how to find P(A and B) for dependent events