Modern Control Systems (MCS) Lecture-23-24 Time Response Discrete Time Control Systems Steady State Errors Dr. Imtiaz Hussain Assistant Professor email: imtiaz.hussain@faculty.muet.edu.pk URL :http://imtiazhussainkalwar.weebly.com/
Lecture Outline Introduction Time Response of DT System Examples Final Value Theorem Steady State Errors
Introduction The time response of a discrete-time linear system is the solution of the difference equation governing the system. For the linear time-invariant (LTI) case, the response due to the initial conditions and the response due to the input can be obtained separately and then added to obtain the overall response of the system. The response due to the input, or the forced response, is the convolution summation of its input and its response to a unit impulse.
Example-1 Given the discrete-time system Find the impulse response of the system. Taking z-transform ๐ฆ ๐+1 โ0.5๐ฆ ๐ =๐ข ๐ Solution ๐ง๐ ๐ง โ0.5๐ ๐ง =๐ ๐ง ๐(๐ง) ๐(๐ง) = 1 ๐งโ0.5
Example-1 Since U(z)=1 Taking Inverse z-Transform ๐(๐ง)= 1 ๐งโ0.5 ๐ฆ ๐ = (0.5) ๐โ1 , ๐โฅ0
Example-2 Given the discrete time system find the system transfer function and its response to a sampled unit step. The transfer function corresponding to the difference equation is ๐ฆ ๐+1 โ๐ฆ ๐ =๐ข ๐+1 Solution ๐ง๐ ๐ง โ๐ ๐ง =๐ง๐ ๐ง ๐(๐ง) ๐(๐ง) = ๐ง ๐งโ๐ง
Example-2 Since U z = ๐ง ๐งโ1 ๐ฆ ๐ =๐+1, ๐โฅ0 ๐(๐ง)= ๐ง ๐งโ1 ๐(๐ง) Taking Inverse z-Transform (time advance Property) ๐(๐ง)= ๐ง ๐งโ1 ๐(๐ง) ๐(๐ง)= ๐ง ๐งโ1 ร ๐ง ๐งโ1 ๐(๐ง)=๐ง ๐ง (๐งโ1) 2 ๐ฆ ๐ =๐+1, ๐โฅ0
Home Work Find the impulse, step and ramp response functions for the systems governed by the following difference equations. ๐ฆ ๐+1 โ0.5๐ฆ ๐ =๐ข ๐ ๐ฆ ๐+2 โ.01๐ฆ ๐+1 +0.8๐ฆ ๐ =๐ข(๐)
Final Value Theorem The final value theorem allows us to calculate the limit of a sequence as k tends to infinity, if one exists, from the z-transform of the sequence. If one is only interested in the final value of the sequence, this constitutes a significant short cut. The main pitfall of the theorem is that there are important cases where the limit does not exist. The two main case are An unbounded sequence An oscillatory sequence
Final Value Theorem If a sequence approaches a constant limit as k tends to infinity, then the limit is given by ๐ โ = lim ๐โโ ๐ ๐ ๐ โ = lim ๐งโ1 ๐งโ1 ๐ง ๐น ๐ง ๐ โ = lim ๐งโ1 (๐งโ1)๐น ๐ง
Example-3 Verify the final value theorem using the z-transform of a decaying exponential sequence and its limit as k tends to infinity. The z-transform of an exponential sequence is Applying final value theorem Solution ๐น ๐ง = ๐ง ๐งโ ๐ โ๐๐ ๐ โ = lim ๐งโ1 ๐งโ1 ๐ง ๐น ๐ง = lim ๐งโ1 ๐งโ1 ๐ง ๐ง ๐งโ ๐ โ๐๐ ๐ โ =0
Example-4 Obtain the final value for the sequence whose z-transform is Applying final value theorem ๐น ๐ง = ๐ง 2 (๐งโ๐) (๐งโ1)(๐งโ๐)(๐งโ๐) Solution ๐ โ = lim ๐งโ1 ๐งโ1 ๐ง ๐ง 2 (๐งโ๐) (๐งโ1)(๐งโ๐)(๐งโ๐) ๐ โ = 1โ๐ (1โ๐)(1โ๐)
Home work Find the final value of following z-transform functions if it exists. ๐น(๐ง)= ๐ง ๐ง 2 โ1.2๐ง+0.2 ๐น(๐ง)= ๐ง ๐ง 2 โ0.3๐ง+2
Steady State Error Consider the unity feedback block diagram shown in following figure. The error ratio can be calculated as Applying the final value theorem yields the steady-state error. ๐ธ(๐ง) ๐ (๐ง) = 1 1+ ๐บ ๐๐ด๐ ๐ง ๐บ(๐ง) ๐ โ = lim ๐งโ1 ๐งโ1 ๐ง ๐ธ ๐ง
Steady state Error As with analog systems, an error constant is associated with each input (e.g., Position Error constant and Velocity Error Constant) Type number can be defined for any system from which the nature of the error constant can be inferred. The type number of the system is the number of unity poles in the system z-transfer function.
Position Error Constant ๐พ ๐ Error of the system is given as Where Therefore, the steady state error due to step input is given as ๐ธ(๐ง)= ๐ (๐ง) 1+ ๐บ ๐๐ด๐ ๐ง ๐บ(๐ง) ๐ ๐ง = ๐ง ๐งโ1 ๐ โ = lim ๐งโ1 ๐งโ1 ๐ง 1 1+ ๐บ ๐๐ด๐ ๐ง ๐บ(๐ง) ๐ง ๐งโ1 ๐ โ = lim ๐งโ1 1 1+ ๐บ ๐๐ด๐ ๐ง ๐บ(๐ง)
Position Error Constant ๐พ ๐ Position error constant ๐พ ๐ is given as Steady state error can be calculated as ๐ โ = lim ๐งโ1 1 1+ ๐บ ๐๐ด๐ ๐ง ๐บ(๐ง) ๐พ ๐ = lim ๐งโ1 ๐บ ๐๐ด๐ ๐ง ๐บ(๐ง) ๐ โ = 1 1+ ๐พ ๐
Velocity Error Constant ๐พ ๐ฃ Error of the system is given as Where Therefore, the steady state error due to step input is given as ๐ธ(๐ง)= ๐ (๐ง) 1+ ๐บ ๐๐ด๐ ๐ง ๐บ(๐ง) ๐ ๐ง = ๐๐ง ๐งโ1 2 ๐ โ = lim ๐งโ1 ๐งโ1 ๐ง 1 1+ ๐บ ๐๐ด๐ ๐ง ๐บ(๐ง) ๐๐ง ๐งโ1 2 ๐ โ = lim ๐งโ1 ๐ ๐งโ1 [1+ ๐บ ๐๐ด๐ ๐ง ๐บ ๐ง ]
Velocity Error Constant ๐พ ๐ฃ ๐พ ๐ฃ is given as Steady state error due to sampled ramp input is given as ๐ โ = lim ๐งโ1 ๐ ๐งโ1 [1+ ๐บ ๐๐ด๐ ๐ง ๐บ ๐ง ] ๐พ ๐ฃ = 1 ๐ lim ๐งโ1 ๐งโ1 ๐บ ๐๐ด๐ ๐ง ๐บ ๐ง ๐ โ = 1 ๐พ ๐ฃ
Example-5 Find the steady-state position error for the digital position control system with unity feedback and with the transfer functions For a sampled unit step input. For a sampled unit ramp input ๐พ ๐ and ๐พ ๐ฃ are given as ๐บ ๐๐ด๐ ๐ง = ๐พ(๐ง+๐) (๐งโ1)(๐งโ๐) ๐ถ ๐ง = ๐พ ๐ (๐งโ๐) ๐งโ๐ ,0<๐,๐,๐<1 Solution ๐พ ๐ฃ = 1 ๐ lim ๐งโ1 ๐งโ1 ๐บ ๐๐ด๐ ๐ง ๐บ ๐ง ๐พ ๐ = lim ๐งโ1 ๐บ ๐๐ด๐ ๐ง ๐บ(๐ง)
Example-5 ๐พ ๐ฃ = 1 ๐ lim ๐งโ1 ๐งโ1 ๐บ ๐๐ด๐ ๐ง ๐บ ๐ง ๐พ ๐ = lim ๐งโ1 ๐บ ๐๐ด๐ ๐ง ๐บ(๐ง) ๐พ ๐ can be further evaluated as Corresponding steady state error is ๐พ ๐ฃ = 1 ๐ lim ๐งโ1 ๐งโ1 ๐บ ๐๐ด๐ ๐ง ๐บ ๐ง ๐พ ๐ = lim ๐งโ1 ๐บ ๐๐ด๐ ๐ง ๐บ(๐ง) ๐พ ๐ = lim ๐งโ1 ๐พ(๐ง+๐) (๐งโ1)(๐งโ๐) ๐พ ๐ (๐งโ๐) ๐งโ๐ ๐พ ๐ = ๐พ(1+๐) (1โ1)(1โ๐) ๐พ ๐ (1โ๐) 1โ๐ =โ ๐ โ = 1 1+ ๐พ ๐ =0
Example-5 ๐พ ๐ฃ = 1 ๐ lim ๐งโ1 ๐งโ1 ๐บ ๐๐ด๐ ๐ง ๐บ ๐ง ๐พ ๐ = lim ๐งโ1 ๐บ ๐๐ด๐ ๐ง ๐บ(๐ง) ๐พ ๐ฃ is evaluated as Corresponding steady state error is ๐พ ๐ฃ = 1 ๐ lim ๐งโ1 ๐งโ1 ๐บ ๐๐ด๐ ๐ง ๐บ ๐ง ๐พ ๐ = lim ๐งโ1 ๐บ ๐๐ด๐ ๐ง ๐บ(๐ง) ๐พ ๐ฃ = 1 ๐ lim ๐งโ1 ๐งโ1 ๐พ(๐ง+๐) (๐งโ1)(๐งโ๐) ๐พ ๐ (๐งโ๐) ๐งโ๐ ๐พ ๐ฃ = 1 ๐ ๐พ(1+๐) (1โ๐) ๐พ ๐ (1โ๐) 1โ๐ = ๐พ ๐พ ๐ (1+๐) ๐(1โ๐) ๐ โ = 1 ๐พ ๐ฃ = ๐(1โ๐) ๐พ ๐พ ๐ (1+๐)
End of Lectures-23-24 To download this lecture visit http://imtiazhussainkalwar.weebly.com/ End of Lectures-23-24