Boyce/DiPrima 10th ed, Ch 6.6: The Convolution Integral Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.

Slides:



Advertisements
Similar presentations
Boyce/DiPrima 9th ed, Ch 2.4: Differences Between Linear and Nonlinear Equations Elementary Differential Equations and Boundary Value Problems, 9th edition,
Advertisements

Boyce/DiPrima 9th ed, Ch 2.8: The Existence and Uniqueness Theorem Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
Ch 3.6: Variation of Parameters
Boyce/DiPrima 9th ed, Ch 3.5: Nonhomogeneous Equations;Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 10.1: Two-Point Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Ch 6.5: Impulse Functions In some applications, it is necessary to deal with phenomena of an impulsive nature. For example, an electrical circuit or mechanical.
Ch 3.5: Nonhomogeneous Equations; Method of Undetermined Coefficients
Ch 7.9: Nonhomogeneous Linear Systems
Ch 6.3: Step Functions Some of the most interesting elementary applications of the Laplace Transform method occur in the solution of linear equations.
Ch 6.1: Definition of Laplace Transform Many practical engineering problems involve mechanical or electrical systems acted upon by discontinuous or impulsive.
Ch 6.6: The Convolution Integral
Ch 6.2: Solution of Initial Value Problems
Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition,
Boyce/DiPrima 9 th ed, Ch 3.1: 2 nd Order Linear Homogeneous Equations-Constant Coefficients Elementary Differential Equations and Boundary Value Problems,
Differential Equations
5.7 Impulse Functions In some applications, it is necessary to deal with phenomena of an impulsive nature—for example, voltages or forces of large magnitude.
Boyce/DiPrima 9th ed, Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 3.4: Repeated Roots; Reduction of Order Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
1 Consider a given function F(s), is it possible to find a function f(t) defined on [0,  ), such that If this is possible, we say f(t) is the inverse.
Engineering Mathematics Class #12 Laplace Transforms (Part3)
Boyce/DiPrima 9 th ed, Ch 5.1: Review of Power Series Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce.
Boyce/DiPrima 9th ed, Ch 4.2: Homogeneous Equations with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 9th edition,
Boyce/DiPrima 9 th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 3.2: Fundamental Solutions of Linear Homogeneous Equations Elementary Differential Equations and Boundary Value Problems, 9 th.
Boyce/DiPrima 9th ed, Ch 1.2: Solutions of Some Differential Equations Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9th ed, Ch 4.1: Higher Order Linear ODEs: General Theory Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Math 3120 Differential Equations with Boundary Value Problems
Boyce/DiPrima 9th ed, Ch 3.3: Complex Roots of Characteristic Equation Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9 th ed, Ch 2.2: Separable Equations Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 11.3: Non- Homogeneous Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Ch 6.2: Solution of Initial Value Problems The Laplace transform is named for the French mathematician Laplace, who studied this transform in The.
Boyce/DiPrima 9 th ed, Ch 5.3: Series Solutions Near an Ordinary Point, Part II Elementary Differential Equations and Boundary Value Problems, 9 th edition,
Boyce/DiPrima 9 th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and Richard.
Boyce/DiPrima 9 th ed, Ch 2.6: Exact Equations & Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Boyce/DiPrima 10th ed, Ch 7.9: Nonhomogeneous Linear Systems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.
Boyce/DiPrima 10th ed, Ch 10.4: Even and Odd Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
Boyce/DiPrima 10th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 10.3: The Fourier Convergence Theorem Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
CHAPTER 4 The Laplace Transform.
Boyce/DiPrima 10th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 9th ed, Ch 10.8 Appendix A: Derivation of the Heat Conduction Equation Elementary Differential Equations and Boundary Value Problems, 9th.
Boyce/DiPrima 10th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 9th ed, Ch 9.6: Liapunov’s Second Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce.
Boyce/DiPrima 9th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 10th ed, Ch 7.4: Basic Theory of Systems of First Order Linear Equations Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 7.7: Fundamental Matrices Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 10th ed, Ch 7.8: Repeated Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
A second order ordinary differential equation has the general form
Boyce/DiPrima 10th ed, Ch 6.5: Impulse Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
Boyce/DiPrima 10th ed, Ch 7.5: Homogeneous Linear Systems with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 10th.
Boyce/DiPrima 10th ed, Ch 6.4: Differential Equations with Discontinuous Forcing Functions Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 4.3: Nonhomogeneous Equations: Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues Elementary Differential Equations and Boundary Value Problems,
Laplace Transform Department of Mathematics
Boyce/DiPrima 9th ed, Ch 3.6: Variation of Parameters Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce.
Ch 3.7: Variation of Parameters
Ch 3.2: Fundamental Solutions of Linear Homogeneous Equations
Ch 6.1: Definition of Laplace Transform
Ch 6.5: Impulse Functions In some applications, it is necessary to deal with phenomena of an impulsive nature. For example, an electrical circuit or mechanical.
Boyce/DiPrima 10th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Ch 6.3: Step Functions Some of the most interesting elementary applications of the Laplace Transform method occur in the solution of linear equations.
Chapter 9: An Introduction to Laplace Transforms
Ch 6.3: Step Functions Some of the most interesting elementary applications of the Laplace Transform method occur in the solution of linear equations.
Boyce/DiPrima 9th ed, Ch 5.3: Series Solutions Near an Ordinary Point, Part II Elementary Differential Equations and Boundary Value Problems, 9th edition,
Presentation transcript:

Boyce/DiPrima 10th ed, Ch 6.6: The Convolution Integral Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and Richard C. DiPrima, ©2013 by John Wiley & Sons, Inc. Sometimes it is possible to write a Laplace transform H(s) as H(s) = F(s)G(s), where F(s) and G(s) are the transforms of known functions f and g, respectively. In this case we might expect H(s) to be the transform of the product of f and g. That is, does H(s) = F(s)G(s) = L{f }L{g} = L{f g}? On the next slide we give an example that shows that this equality does not hold, and hence the Laplace transform cannot in general be commuted with ordinary multiplication. In this section we examine the convolution of f and g, which can be viewed as a generalized product, and one for which the Laplace transform does commute.

Observation Let f (t) = 1 and g(t) = sin(t). Recall that the Laplace Transforms of f and g are Thus and Therefore for these functions it follows that

Theorem 6.6.1 Suppose F(s) = L{f (t)} and G(s) = L{g(t)} both exist for s > a  0. Then H(s) = F(s)G(s) = L{h(t)} for s > a, where The function h(t) is known as the convolution of f and g and the integrals above are known as convolution integrals. Note that the equality of the two convolution integrals can be seen by making the substitution u = t - . The convolution integral defines a “generalized product” and can be written as h(t) = ( f *g)(t). See text for more details.

Theorem 6.6.1 Proof Outline

Example 1: Find Inverse Transform (1 of 2) Find the inverse Laplace Transform of H(s), given below. Solution: Let F(s) = 1/s2 and G(s) = a/(s2 + a2), with Thus by Theorem 6.6.1,

Example 1: Solution h(t) (2 of 2) We can integrate to simplify h(t), as follows.

Example 2: Initial Value Problem (1 of 4) Find the solution to the initial value problem Solution: or Letting Y(s) = L{y}, and substituting in initial conditions, Thus

Example 2: Solution (2 of 4) We have Thus Note that if g(t) is given, then the convolution integral can be evaluated.

Example 2: Laplace Transform of Solution (3 of 4) Recall that the Laplace Transform of the solution y is Note  (s) depends only on system coefficients and initial conditions, while  (s) depends only on system coefficients and forcing function g(t). Further, (t) = L-1{ (s)} solves the homogeneous IVP while (t) = L-1{ (s)} solves the nonhomogeneous IVP

Example 2: Transfer Function (4 of 4) Examining  (s) more closely, The function H(s) is known as the transfer function, and depends only on system coefficients. The function G(s) depends only on external excitation g(t) applied to system. If G(s) = 1, then g(t) = (t) and hence h(t) = L-1{H(s)} solves the nonhomogeneous initial value problem Thus h(t) is response of system to unit impulse applied at t = 0, and hence h(t) is called the impulse response of system.

Input-Output Problem (1 of 3) Consider the general initial value problem This IVP is often called an input-output problem. The coefficients a, b, c describe properties of physical system, and g(t) is the input to system. The values y0 and y0' describe initial state, and solution y is the output at time t. Using the Laplace transform, we obtain or

Laplace Transform of Solution (2 of 3) We have As before,  (s) depends only on system coefficients and initial conditions, while  (s) depends only on system coefficients and forcing function g(t). Further, (t) = L-1{ (s)} solves the homogeneous IVP while (t) = L-1{ (s)} solves the nonhomogeneous IVP

Transfer Function (3 of 3) Examining  (s) more closely, As before, H(s) is the transfer function, and depends only on system coefficients, while G(s) depends only on external excitation g(t) applied to system. Thus if G(s) = 1, then g(t) = (t) and hence h(t) = L-1{H(s)} solves the nonhomogeneous IVP Thus h(t) is response of system to unit impulse applied at t = 0, and hence h(t) is called the impulse response of system, with