The Dimension of Cone and Ball
Kerucut/ Cone Limas beraturan yang memiliki alas berbentuk lingkaran. Memiliki satu alas dengan satu titik puncak. Pyramid which has circle base. Has one base with one peak spot.
Surface Area Of Cone Coat Area Cone : πrs Cone Area : πr(r+s) Note : Π =3.14 r = the radius of base s = painter line
Cone Volume Volume :1/3 πr2 t Note : Π = 3.14 r = the radius t = hight
The example of cone
Example Find total area, volume, and coat area of : r(6 cm), height( 8 cm).
The answer We use theorema pythagoras to find the length of s. s2=r2+t2 and we get s = 10 cm A) The coat area = πrs = 3.14 X 6 X 10 = 188.4 cm2
B)Total Area : πr(r+s) :3.14 X 6(6+10) :301.44 cm2 C) Volume :1/3 πr2t :1/3X3.14X36X8 :301.44 cm3
Bola/Ball Rangkaian titik-titik pada suatu ruang yang mempunyai jarak yang sama dari titik tetap (pusat). Jarak tersebut disebut jari-jari bola. Network of spots in a room which have same distance from a still spot (center). That distance called radius.
Surface Area(Luas permukaan) Surface Area(SA)= 4 πr2
Volume of ball ( Volume) Volume(V)=4/3 πr3
Example Find the area and the volume from ball that have r=6 cm
Answer A) The area : 4 πr2 : 4X3.14X36 : 452.16 cm2 B) The Volume : 4/3 πr3 : 4/3X3.14X216 : 904.32 cm3
The Example of ball