LCLS2sc MAD files: Injector to Bypass Line

Slides:



Advertisements
Similar presentations
Nominal and no CSR (R 56-1 = 55 mm, R 56-2 = 59 mm, R 56-3 = 0) L1 phase = 21 deg, V 3.9 = 55 MV CSR OFF BC3 OFF Elegant Tracking  z1 = mm (post.
Advertisements

Update of RTML, Status of FNAL L-band and CLIC X-band BPM, Split SC Quadrupole Nikolay Solyak Fermilab (On behalf of RTML team) LCWS2010 / ILC 10, March.
A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ,
Christopher Gerth, Michael Röhrs, Holger Schlarb DESY Hamburg Optics for Diagnostic Section BC1 in the European XFEL.
Tessa Charles Australian Synchrotron / Monash University 1 Bunch Compression Schemes for X-band FELs.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
LHeC Test Facility Meeting
ILC RTML Lattice Design A.Vivoli, N. Solyak, V. Kapin Fermilab.
M. Venturini, Sept. 26, 2013, SLAC 1 ─ M. Venturini, Sept. 26, 2013, SLAC Marco Venturini LBNL Sept. 26, 2013 THE LATE NGLS: OVERVIEW OF LINAC DESIGN,
~ gun3.9 GHz cavity Bunch compressor 3 ILC cryomodules 45 deg. spectro injector main linac user area disp. area transport line Overview of.
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
XFEL BC Review Meeting, 18/12/2006, Christopher Gerth Christopher Gerth, Michael Röhrs, Holger Schlarb DESY Hamburg Optics Layout of the Diagnostic Sections.
LCLS Accelerator SLAC linac tunnel research yard Linac-0 L =6 m Linac-1 L  9 m  rf   25° Linac-2 L  330 m  rf   41° Linac-3 L  550 m  rf  0°
Paul Emma, et. al. Sep. 18, 2013 Paul Emma, et. al. Sep. 18, 2013 Design Considerations for the NGLS (Next Generation Light Source) NGLS.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Simulation of Microbunching Instability in LCLS with Laser-Heater Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory.
Electron Source Configuration Axel Brachmann - SLAC - Jan , KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center.
Max Cornacchia, Paul Emma Stanford Linear Accelerator Center Max Cornacchia, Paul Emma Stanford Linear Accelerator Center  Proposed by M. Cornacchia (Nov.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
Bruno Muratori (for the EMMA team) STFC, Daresbury Laboratory EMMA commissioning 02/09/08.
1 Alternative ILC Bunch Compressor 7 th Nov KNU (Kyungpook National Univ.) Eun-San Kim.
T. Limberg Position of the 3rd Harmonic System. Injector (with first Bunch Compression Stage) 2 European XFEL MAC May 2010 T. Limberg.
Beam Stay-Clear (BSC) Apertures in LCLS-II June 24, 2015 P. Emma Take up work Jim Welch started (LCLSII-TN-14-15, Jan. 23, 2015) Goal is to define stay-clear.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
Status of RTML design in TDR configuration A.Vivoli, N. Solyak, V. Kapin Fermilab.
Post-LH Diagnostic Line for LCLS-II P. Emma, M. Woodley, Y. Nosochkov, Feb. 26, 2014 Steal beam at Hz with y -kicker after LH (  y = 15 mm) Bend.
LCLS-II Particle Tracking: Gun to Undulator P. Emma Jan. 12, 2011.
Beam Optics of the TTF2 Nina Golubeva DESY. Beam optics from the BC2 up to the undulators General introduction to linear optics: – constraints for different.
A. Zholents (ANL) and M. Zolotorev (LBNL)
ICFA Workshop on Future Light Source, FLS2012 M. Shimada A), T. Miyajima A), N. Nakamura A), Y. Kobayashi A), K. Harada A), S. Sakanaka A), R. Hajima B)
Preliminary Tracking Results through LCLS-II P. Emma et al., Oct. 23, 2013 Thanks to Mark Woodley and Yuri Nosochkov for MAD design work Use Christos Papadopoulos.
X-band Based FEL proposal
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
LSC/CSR Instability Introduction (origin of the instability) CSR/LSC
ILC2016x 12/08/2016 LCWS2016 (Morioka, Japan).
ILC-CR-0004 Main Linac extension: Implementation status
Beam dynamics for an X-band LINAC driving a 1 keV FEL
ILC Z-pole Calibration Runs Main Linac performance
X-band FEL beam dynamics issues
LCLS-II Lattice 26FEB16: updates in the areas from bypass to dump
Alternate Lattice for LCLS-II LTU Y
Beam-Based Feedback in LCLS-II
XFEL Beam Physics 10/30/2015 Tor Raubenheimer.
ILC BDS Emittance Diagnostics: Design and Requirements
A. Zholents (ANL) and M. Zolotorev (LBNL)
Re-circulating Linac Option
01SEP17.
Injector Beam Line Optics
Time-Resolved Images of Coherent Synchrotron Radiation Effects
Electron Source Configuration
CEPC Injector Damping Ring
Simulation Calculations
Injector Commissioning C
Linac/BC1 Commissioning P
LCLS-II β-Matching Study
LCLS Linac Overview E. Bong Lehman Review August 10, 2004
Design of Compression and Acceleration Systems Technical Challenges
LCLS Commissioning P. Emma, et al
LCLS Tracking Studies CSR micro-bunching in compressors
Modified Beam Parameter Range
Linac Physics, Diagnostics, and Commissioning Strategy P
LCLS Injector Commissioning P
– Overview Alex Bogacz JLAB, Aug. 14, 2017.
Linearization of Bunch Compression (2nd order )
Current State of the Lattice Studies for the XFEL Injector
XFEL Beam Dynamics Activity at CANDLE
Electron Optics & Bunch Compression
Bunch Compressor Beam Line Optics
Presentation transcript:

LCLS2sc MAD files: Injector to Bypass Line lattice version 1.2 (October 30, 2013) M. Woodley SXU HXU proposed FACET-II LCLS-I LCLS-II SC Linac cross-over bypass line m-wall A-line B-line Sector-10 Sector-20 Sector-30 Sector-0 extension line L3 L2 L1 s (m)

new linac beam axis defined X= +0.28 m , Y= -0.99 m w.r.t. original linac axis Z= original linac Z-coordinate Z= 0 at start of LI01 Z= -20 m at cathode

LCLS-II - Linac and Compressor Layout for 4 GeV Cavities per Amplifier j = * V0 =94 MV Ipk = 12 A Lb = 2.0 mm L1 j =-21° V0 =223 MV Ipk = 12 A Lb =2.0 mm L2 j = -21° V0 =1447 MV Ipk = 50 A Lb = 0.56 mm L3 j = 0 V0 =2409 MV Ipk = 1.0 kA Lb = 0.024 mm HL j =-165° V0 =55 MV CM01 CM2,3 3.9GHz CM04 CM15 CM16 CM35 LTU E = 4.0 GeV R56 = 0 sd  0.016% 2-km LH E = 95 MeV R56 = -14.5 mm sd = 0.05 % BC1 E = 250 MeV R56 = -55 mm sd = 1.4 % BC2 E = 1600 MeV R56 = -60 mm sd = 0.46 % GUN 0.75 MeV 100-pC machine layout: Oct. 8, 2013; v21 ASTRA run; Bunch length Lb is FWHM Linac Sec. V (MV) j (deg) Acc. Grad. (MV/m) No. Cryo Mod’s No. Avail. Cav’s Spare Cav’s Cavities per Amplifier L0 94 * 13.2 1 8 L1 220 -21 14.3 2 16 HL -55 -165 14.5 3 12 L2 1447 15.5 96 6 48 L3 2409 15.4 20 160 10 Includes 2-km RW-wake * L0 cav. phases: ~(3.4, -15.2, 0, 0, 0, 15, 15), with cav-2 at 22% of other L0 cavity gradients.

Gun + L0 Egun = 750 KeV Einj = 98 MeV L0 : α = -0.2173 Egun = 750 KeV Einj = 98 MeV L0 : 8 cavity cryomodule (layout courtesy XFEL Mad deck) gradients and phases per P. Emma layout (version of October 8, 2013) initial Twiss are “artificial” final Twiss from C. Papadopoulos ("GUN2013_10_08v3“)

Matching + Laser Heater + L1 98 MeV 250 MeV Einj = 98 MeV EBC1 = 250 MeV 6 quadrupole matching section between L0 and Laser Heater Laser Heater chicane: lengthened version of LCLS system (L= 3.529 m) ηmax= 7.5 cm, R56= 14.5 mm βX = βY = 10 m (α = 0) at center of chicane includes momentum collimator space for kicker (L= 2 m) and long drift (L= 8 m) provided for extraction to diagnostic line L1 : 2 x 8 cavity cryomodules (layout courtesy XFEL Mad deck) … φ= -22° 3 x 4 cavity harmonic linearizer cryomodules (3.9 GHz) … φ= -165° 90° FODO lattice

BC1 + Betatron Collimation EBC1 = 250 MeV BC1 chicane : copy of LCLS system R56= 55 mm small βX at fourth bend (CSR) space for kicker (L= 2 m) and long drift (≈ 15 m total) provided for extraction to diagnostic line betatron collimation system : 2 x 90 ° FODO cells (Lcell ≈ 16 m) β = 25 m at collimators (2 x horizontal collimation + 2 x vertical collimation)

L2 250 MeV 1.6 GeV EBC1 = 250 MeV EBC2 = 1.6 GeV L2 : 12 x 8 cavity cryomodules (layout courtesy XFEL Mad deck) … φ= -21° 30° FODO lattice

BC2 + Betatron Collimation EBC2 = 1.6 GeV BC2 chicane : copy of LCLS system R56= 60 mm small βX at fourth bend (CSR) space for kicker (L= 2.5 m) and long drift (≈ 30 m total) provided for extraction to diagnostic line betatron collimation system : 2 x 90 ° FODO cells (Lcell ≈ 24 m) β = 38.4 m at collimators (2 x horizontal collimation + 2 x vertical collimation)

L3 + Extension to LI10 EBC2 = 1.6 GeV Efinal = 4.0 GeV L3 : 20 x 8 cavity cryomodules (layout courtesy XFEL Mad deck) … φ= 0 15° FODO lattice L3 extension : 4 x 90° FODO cells (Lcell= 45 m) at start of Bypass Dogleg, Z= 936.872 m (≈ 22.5 m into LI10)

Bypass Dogleg + Match to Bypass Line FODO Efinal = 4.0 GeV dogleg bending system : from X/Y = +0.28/-0.99 m to X/Y = -0.650494/+0.649478 m (ΔX/ΔY = -0.37/+1.64 m) two 1.06° bends, rolled to 60.4° 4 x 90° FODO cells (Lcell= 25.4) cancel dispersion in both planes momentum collimator and wire scanner included total Z-length = 102.5 m

To Do for “Baseline” release update compression parameters to latest version of P. Emma layout use M. Venturini’s laser heater undulator parameters exchange X and Y collimators in HXR diagnostics section upload files to SharePoint site MAD8 input files MAD8 output files ELEGANT input files generate upload files for Oracle Database To Do after “Baseline” release reduce chromaticity of initial matching section (L0 to LH) and other sections identified by Paul design extraction systems and diagnostic lines (LH, BC1, BC2) more relaxed β-functions in L2 and L3 (FFODDO rather than FODO?) add correctors, BPMs, and other diagnostics more …

https://portal. slac. stanford https://portal.slac.stanford.edu/sites/lcls_public/lcls_ii/beamline_optics/wiki_lib/Home.aspx